2021
Counting Minimal Unsatisfiable Subsets
BENDÍK, Jaroslav a Kuldeep S. MEELZákladní údaje
Originální název
Counting Minimal Unsatisfiable Subsets
Autoři
BENDÍK, Jaroslav (203 Česká republika, garant, domácí) a Kuldeep S. MEEL (356 Indie)
Vydání
Cham, Computer Aided Verification - 33rd International Conference, od s. 313-336, 24 s. 2021
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/21:00122309
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-81687-2
ISSN
UT WoS
000693429500015
Klíčová slova anglicky
satisfiability
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 4. 2022 10:06, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Given an unsatisfiable Boolean formula F in CNF, an unsatisfiable subset of clauses U of F is called Minimal Unsatisfiable Subset (MUS) if every proper subset of U is satisfiable. Since MUSes serve as explanations for the unsatisfiability of F, MUSes find applications in a wide variety of domains. The availability of efficient SAT solvers has aided the development of scalable techniques for finding and enumerating MUSes in the past two decades. Building on the recent developments in the design of scalable model counting techniques for SAT, Bendik and Meel initiated the study of MUS counting techniques. They succeeded in designing the first approximate MUS counter, AMUSIC, that does not rely on exhaustive MUS enumeration. AMUSIC, however, suffers from two shortcomings: the lack of exact estimates and limited scalability due to its reliance on 3-QBF solvers. In this work, we address the two shortcomings of AMUSIC by designing the first exact MUS counter, CountMUST, that does not rely on exhaustive enumeration. CountMUST circumvents the need for 3-QBF solvers by reducing the problem of MUS counting to projected model counting. While projected model counting is #NP-hard, the past few years have witnessed the development of scalable projected model counters. An extensive empirical evaluation demonstrates that CountMUST successfully returns MUS count for 1500 instances while AMUSIC and enumeration-based techniques could only handle up to 833 instances.