2021
Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province
LIU, Mengmeng, Jiping LIU, Shenghua XU, Tao ZHOU, Yu MA et. al.Základní údaje
Originální název
Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province
Autoři
LIU, Mengmeng, Jiping LIU (garant), Shenghua XU, Tao ZHOU, Yu MA, Fuhao ZHANG a Milan KONEČNÝ (203 Česká republika, domácí)
Vydání
International Journal of Image and Data Fusion, Taylor and Francis Ltd. 2021, 1947-9832
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10508 Physical geography
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/21:00122321
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000684463600001
Klíčová slova anglicky
Landslide susceptibility mapping; fuzzy c-means; support vector machine; Shaanxi Province
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 11. 2021 16:44, Mgr. Marie Šípková, DiS.
Anotace
V originále
The quality of "non-landslide' samples data impacts the accuracy of geological hazard risk assessment. This research proposed a method to improve the performance of support vector machine (SVM) by perfecting the quality of `non-landslide' samples in the landslide susceptibility evaluation model through fuzzy c-means (FCM) cluster to generate more reliable susceptibility maps. Firstly, three sample selection scenarios for `non-landslide' samples include the following principles: 1) select randomly from low-slope areas (scenario-SS), 2) select randomly from areas with no hazards (scenarioRS), 3) obtain samples from the optimal FCM model (scenario-FCM), and then three sample scenarios are constructed with 10,193 landslide positive samples. Next, we have compared and evaluated the performance of three sample scenarios in the SVM models based on the statistical indicators such as the proportion of disaster points, density of disaster points precision, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally, The evaluation results show that the `non-landslide' negative samples based on the FCM model are more reasonable. Furthermore, the hybrid method supported by SVM and FCM models exhibits the highest prediction efficiency. Scenario FCM produces an overall accuracy of approximately 89.7% (AUC), followed by scenario-SS (86.7%) and scenario-RS (85.6%).