2022
Landslide susceptibility mapping along the Thimphu-Phuentsholing highway using machine learning
DAHAL, Manju Sara, Asheer CHHETRI, Hemant GHALLEY, Sangey PASANG, Moujhuri PATRA et. al.Základní údaje
Originální název
Landslide susceptibility mapping along the Thimphu-Phuentsholing highway using machine learning
Autoři
DAHAL, Manju Sara, Asheer CHHETRI, Hemant GHALLEY, Sangey PASANG (64 Bhútán, domácí) a Moujhuri PATRA
Vydání
1. vyd. Cambridge, Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management, od s. 601-617, 17 s. 2022
Nakladatel
Elsevier
Další údaje
Jazyk
angličtina
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Obor
10500 1.5. Earth and related environmental sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14310/22:00125019
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-0-323-89861-4
Klíčová slova anglicky
Landslides; Thimphu-phuentsholing highway; Machine learning; Logistic regression; Random forest
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 7. 2023 11:15, Mgr. Marie Šípková, DiS.
Anotace
V originále
In the Himalayan region, landslides are considered one of the most common natural disasters. The study area for this study is a 2 km buffer along the Thimphu-Phuentsholing highway in Bhutan, which is a part of Asian Highway 48. In this study, machine learning was adopted which allows relatively precise predictions to be made by providing accurate and reliable data. Of the numerous methods available for machine learning, two methods, i.e., random forest (RF) and logistic regression (LR) have been selected for this paper. Slope, aspect, geology, land cover, precipitation, distance from the drainage, distance from the road, TPI, TRI, Elevation, and surface roughness were the parameters selected for the study area. The two methods are validated and compared using the ROC and (AUC). The RF method performed slightly better than the LR method with an AUC of 0.91 and LR of 0.86.