2021
Recommendation Recovery with Adaptive Filter for Recommender Systems
BLANCO SÁNCHEZ, José Miguel, Mouzhi GE a Tomáš PITNERZákladní údaje
Originální název
Recommendation Recovery with Adaptive Filter for Recommender Systems
Autoři
BLANCO SÁNCHEZ, José Miguel (724 Španělsko, garant, domácí), Mouzhi GE (156 Čína) a Tomáš PITNER (203 Česká republika, domácí)
Vydání
Setúbal, Portugal, Proceedings of the 17th International Conference on Web Information Systems and Technologies - WEBIST, od s. 283-290, 8 s. 2021
Nakladatel
SciTePress/INSTICC
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/21:00122770
Organizační jednotka
Fakulta informatiky
ISBN
978-989-758-536-4
ISSN
UT WoS
000795868100028
Klíčová slova anglicky
Recommender Systems; Recommendation Recovery; Adaptive Filter; User-oriented Recommendation
Štítky
Změněno: 15. 5. 2024 02:34, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Most recommender systems are focused on suggesting the optimal recommendations rather than finding a way to recover from a failed recommendation. Thus, when a failed recommendation appears several times, users may abandon to use a recommender system by considering that the system does not take her preference into account. One of the reasons is that when a user does not like a recommendation, this preference cannot be instantly captured by the recommender learning model, since the learning model cannot be constantly updated. Although this can be to some extent alleviated by critique-based algorithms, fine tuning the preference is not capable of fully expelling not-preferred items. This paper is therefore to propose a recommender recovery solution with an adaptive filter to deal with the failed recommendations while keeping the user engagement and, in turn, allow the recommender system to become a long-term application. It can also avoid the cost of constantly updating the recommender learning model.