J 2022

Supernovae in colliding-wind binaries: observational signatures in the first year

PEJCHA, Ondřej, Diego CALDERÓN a Petr KURFÜRST

Základní údaje

Originální název

Supernovae in colliding-wind binaries: observational signatures in the first year

Autoři

PEJCHA, Ondřej (203 Česká republika, garant), Diego CALDERÓN a Petr KURFÜRST (203 Česká republika, domácí)

Vydání

Monthly Notices of the Royal Astronomical Society, Oxford University Press, 2022, 0035-8711

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.800

Kód RIV

RIV/00216224:14310/22:00125049

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000749577000010

Klíčová slova anglicky

binaries: general; stars: massive; supernovae: general; stars: winds; outflows

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 9. 1. 2023 10:46, Mgr. Marie Šípková, DiS.

Anotace

V originále

When a core-collapse supernova explodes in a binary star system, the ejecta might encounter an overdense shell, where the stellar winds of the two stars previously collided. In this work, we investigate effects of such interactions on supernova light curves on time-scales from the early flash ionization signatures to approximately one year after the explosion. We construct a model of the colliding-wind shell in an orbiting binary star system and we provide an analytical expression for the shell thickness and density, which we calibrate with three-dimensional adaptive mesh refinement hydrodynamical simulations probing different ratios of wind momenta and different regimes of radiative cooling efficiency. We model the angle-dependent interaction of supernova ejecta with the circumstellar medium and estimate the shock radiative efficiency with a realistic cooling function. We find that the radiated shock power exceeds typical Type IIP supernova luminosity only for double red supergiant binaries with mass ratios q less than 0.9, wind mass-loss rates greater than 10^{-4} solar mass per year, and separations between about 50 and 1500 AU. The required mass-loss rate increases for binaries with smaller q or primaries with faster wind. We estimate that much less than 1 percent of all collapsing massive stars satisfy the conditions on binary mass ratio and separation. Recombination luminosities due to colliding wind shells are at most a factor of 10 higher than for an otherwise unperturbed constant-velocity wind, but higher densities associated with wind acceleration close to the star provide much stronger signal.