2022
Supernovae in colliding-wind binaries: observational signatures in the first year
PEJCHA, Ondřej, Diego CALDERÓN a Petr KURFÜRSTZákladní údaje
Originální název
Supernovae in colliding-wind binaries: observational signatures in the first year
Autoři
PEJCHA, Ondřej (203 Česká republika, garant), Diego CALDERÓN a Petr KURFÜRST (203 Česká republika, domácí)
Vydání
Monthly Notices of the Royal Astronomical Society, Oxford University Press, 2022, 0035-8711
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.800
Kód RIV
RIV/00216224:14310/22:00125049
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000749577000010
Klíčová slova anglicky
binaries: general; stars: massive; supernovae: general; stars: winds; outflows
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 9. 1. 2023 10:46, Mgr. Marie Šípková, DiS.
Anotace
V originále
When a core-collapse supernova explodes in a binary star system, the ejecta might encounter an overdense shell, where the stellar winds of the two stars previously collided. In this work, we investigate effects of such interactions on supernova light curves on time-scales from the early flash ionization signatures to approximately one year after the explosion. We construct a model of the colliding-wind shell in an orbiting binary star system and we provide an analytical expression for the shell thickness and density, which we calibrate with three-dimensional adaptive mesh refinement hydrodynamical simulations probing different ratios of wind momenta and different regimes of radiative cooling efficiency. We model the angle-dependent interaction of supernova ejecta with the circumstellar medium and estimate the shock radiative efficiency with a realistic cooling function. We find that the radiated shock power exceeds typical Type IIP supernova luminosity only for double red supergiant binaries with mass ratios q less than 0.9, wind mass-loss rates greater than 10^{-4} solar mass per year, and separations between about 50 and 1500 AU. The required mass-loss rate increases for binaries with smaller q or primaries with faster wind. We estimate that much less than 1 percent of all collapsing massive stars satisfy the conditions on binary mass ratio and separation. Recombination luminosities due to colliding wind shells are at most a factor of 10 higher than for an otherwise unperturbed constant-velocity wind, but higher densities associated with wind acceleration close to the star provide much stronger signal.