2021
SPEED21: Speed Climbing Motion Dataset
ELIÁŠ, Petr, Veronika ŠKVARLOVÁ a Pavel ZEZULAZákladní údaje
Originální název
SPEED21: Speed Climbing Motion Dataset
Autoři
ELIÁŠ, Petr (203 Česká republika, domácí), Veronika ŠKVARLOVÁ (703 Slovensko, domácí) a Pavel ZEZULA (203 Česká republika, garant, domácí)
Vydání
New York, NY, United States, MMSports'21: Proceedings of the 4th International Workshop on Multimedia Content Analysis in Sports, od s. 43-50, 8 s. 2021
Nakladatel
Association for Computing Machinery
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/21:00129011
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-8670-8
Klíčová slova anglicky
speed climbing; sports dataset; 2d skeleton series; k-nn search; similarity
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2023 10:11, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
With the recent advances in computer vision and deep learning, the research interest in video-based and skeleton-based sports analysis is growing. Also, speed climbing as a sport is on the rise, being included as an Olympic sport in Tokyo 2020. This work aims to connect both of these worlds. First, a dataset of 362 speed climbing performances is provided for the community of domain experts and practitioners in human motion understanding and sports analysis. The dataset annotates pre-segmented performances of 55 world elite athletes in the form of 2D skeleton sequences extracted from world competition events videos. Secondly, a high descriptiveness and usability of 2D skeleton data is demonstrated in the search scenario that matches climbers by the similarities in their climbing style with high accuracy. The high k-NN search precision above 90 % is achieved by a synergic combination of suitable representation with a semi-dependent variant of Dynamic Time Warping (DTW). The proposed DTW variant computes distances separately across individual semantic body parts (e.g., hands and feet) whose atoms (joints or angles) are wired together for the temporal alignment.
Návaznosti
GA19-02033S, projekt VaV |
|