2021
When Tesseract Brings Friends: Layout Analysis, Language Identification, and Super-Resolution in the Optical Character Recognition of Medieval Texts
NOVOTNÝ, Vít, Kristýna SEIDLOVÁ, Tereza VRABCOVÁ a Aleš HORÁKZákladní údaje
Originální název
When Tesseract Brings Friends: Layout Analysis, Language Identification, and Super-Resolution in the Optical Character Recognition of Medieval Texts
Autoři
NOVOTNÝ, Vít (203 Česká republika, garant, domácí), Kristýna SEIDLOVÁ (203 Česká republika, domácí), Tereza VRABCOVÁ (203 Česká republika, domácí) a Aleš HORÁK (203 Česká republika, domácí)
Vydání
Brno, Recent Advances in Slavonic Natural Language Processing (RASLAN 2021), od s. 29-39, 11 s. 2021
Nakladatel
Tribun EU
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/21:00119901
Organizační jednotka
Fakulta informatiky
ISBN
978-80-263-1670-1
ISSN
Klíčová slova anglicky
Optical character recognition · Layout analysis; Language identification; Image super-resolution; Medieval texts
Změněno: 15. 5. 2024 09:25, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The aim of the AHISTO project is to make documents from the Hussite era (1419–1436) available to the general public through a web-hosted searchable database. Although scanned images of letterpress reprints from the 19th and 20th century are available, accurate optical character recognition (OCR) algorithms are required to extract searchable text from the scanned images. In our previous article [15], we have shown that the Tesseract 4 OCR algorithm was the second fastest and the most accurate among five different OCR algorithms. In this article, we investigate the impact of six preprocessing techniques on the accuracy of Tesseract 4. Additionally, we compare Tesseract 4 with three other OCR algorithms on the language identification task. Furthermore, we publish an open dataset [16] of scanned images and OCR texts with human annotations for layout analysis, OCR evaluation, and language identification. In Section 2, we describe the related work in OCR preprocessing. In Section 3, we describe our three preprocessing techniques and our two evaluation tasks. In Section 4, we discuss the results of our evaluation. In Section 5, we offer concluding remarks and ideas for future work in the OCR of medieval texts.
Návaznosti
LM2018101, projekt VaV |
|