2021
Who is Selling to Whom – Feature Evaluation for Multi-block Classification in Invoice Information Extraction
HA, Hien Thi a Aleš HORÁKZákladní údaje
Originální název
Who is Selling to Whom – Feature Evaluation for Multi-block Classification in Invoice Information Extraction
Autoři
HA, Hien Thi (704 Vietnam, domácí) a Aleš HORÁK (203 Česká republika, domácí)
Vydání
St. Petersburg, Russia, SPECOM 2021: 23rd International Conference on Speech and Computer, od s. 250-261, 12 s. 2021
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/21:00123275
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-87801-6
ISSN
Klíčová slova anglicky
OCR; Invoice; Block type classification; Seller; Buyer; Delivery address
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 10. 2022 10:26, doc. RNDr. Aleš Horák, Ph.D.
Anotace
V originále
The invoice information extraction task aims at unifying the automatized processing of invoices in structured forms and in the form of a scanned image. Recognizing the pieces of information where a specific value is identified with a keyword (such as the invoice date) is a relatively well-managed task. On the other hand, identification of multi-block information on the invoice, such as distinguishing the seller, buyer, and the delivery address, is much more challenging due to versatile invoice layouts. In this work, we present a new technique of feature extraction and classification to recognize the seller, buyer, and delivery address text blocks in scanned invoices based on a combination of complex layout and annotated text features. The method does not only consider the block positional features but also the relation between blocks and block contents at a higher level. The technique is implemented as a module of the OCRMiner system. We offer its detailed evaluation and error analysis with a dataset of more than five hundred Czech invoices reaching the overall macro average F1-score of 94%.
Návaznosti
LM2018101, projekt VaV |
| ||
MUNI/A/1195/2021, interní kód MU |
|