2022
Preventing Cheating in Hands-on Lab Assignments
VYKOPAL, Jan, Valdemar ŠVÁBENSKÝ, Pavel ŠEDA a Pavel ČELEDAZákladní údaje
Originální název
Preventing Cheating in Hands-on Lab Assignments
Autoři
VYKOPAL, Jan (203 Česká republika, garant, domácí), Valdemar ŠVÁBENSKÝ (703 Slovensko, domácí), Pavel ŠEDA (203 Česká republika, domácí) a Pavel ČELEDA (203 Česká republika, domácí)
Vydání
New York, NY, USA, Proceedings of the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE '22), od s. 78-84, 7 s. 2022
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14610/22:00125129
Organizační jednotka
Ústav výpočetní techniky
ISBN
978-1-4503-9070-5
UT WoS
000884263800012
Klíčová slova anglicky
summative assessment; automatic problem generation; networking; operating systems; cybersecurity; exercise; homework; case study
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 1. 2023 16:14, RNDr. Valdemar Švábenský, Ph.D.
Anotace
V originále
Networking, operating systems, and cybersecurity skills are exercised best in an authentic environment. Students work with real systems and tools in a lab environment and complete assigned tasks. Since all students typically receive the same assignment, they can consult their approach and progress with an instructor, a tutoring system, or their peers. They may also search for information on the Internet. Having the same assignment for all students in class is standard practice efficient for learning and developing skills. However, it is prone to cheating when used in a summative assessment such as graded homework, a mid-term test, or a final exam. Students can easily share and submit correct answers without completing the assignment. In this paper, we discuss methods for automatic problem generation for hands-on tasks completed in a computer lab environment. Using this approach, each student receives personalized tasks. We developed software for generating and submitting these personalized tasks and conducted a case study. The software was used for creating and grading a homework assignment in an introductory security course enrolled by 207 students. The software revealed seven cases of suspicious submissions, which may constitute cheating. In addition, students and instructors welcomed the personalized assignments. Instructors commented that this approach scales well for large classes. Students rarely encountered issues while running their personalized lab environment. Finally, we have released the open-source software to enable other educators to use it in their courses and learning environments.
Návaznosti
EF16_019/0000822, projekt VaV |
| ||
MUNI/A/1520/2021, interní kód MU |
|