2022
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
JAMÁRIK, Jakub, Lubomír VOJTÍŠEK, Vendula CHUROVÁ, Tomáš KAŠPÁREK, Daniel SCHWARZ et. al.Základní údaje
Originální název
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Autoři
JAMÁRIK, Jakub (703 Slovensko, domácí), Lubomír VOJTÍŠEK (203 Česká republika, domácí), Vendula CHUROVÁ (203 Česká republika, domácí), Tomáš KAŠPÁREK (203 Česká republika, domácí) a Daniel SCHWARZ (203 Česká republika, garant, domácí)
Vydání
Diagnostics, Basel, MDPI, 2022, 2075-4418
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.600
Kód RIV
RIV/00216224:14110/22:00125139
Organizační jednotka
Lékařská fakulta
UT WoS
000757263000001
Klíčová slova anglicky
cortical layers; mathematical modeling; MR imaging; optimization algorithm; brain imaging
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 10. 2024 10:35, Ing. Jana Kuchtová
Anotace
V originále
Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.
Návaznosti
NV17-33136A, projekt VaV |
| |
90129, velká výzkumná infrastruktura |
|