2021
Learning to denoise astronomical images with U-nets
VOJTEKOVÁ, Antónia, Maggie LIEU, Ivan VALTCHANOV, Bruno ALTIERI, Lyndsay OLD et. al.Základní údaje
Originální název
Learning to denoise astronomical images with U-nets
Autoři
VOJTEKOVÁ, Antónia (703 Slovensko, garant, domácí), Maggie LIEU, Ivan VALTCHANOV, Bruno ALTIERI, Lyndsay OLD, Qifeng CHEN a Filip HROCH (203 Česká republika, domácí)
Vydání
Monthly Notices of the Royal Astronomical Society, Oxford University Press, 2021, 0035-8711
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.235
Kód RIV
RIV/00216224:14310/21:00123743
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000649000600006
Klíčová slova anglicky
methods: data analysis; techniques: image processing
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 1. 2022 15:57, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Y Astronomical images are essential for exploring and understanding the Universe. Optical telescopes capable of deep observations, such as the Hubble Space Telescope (HST), are heavily oversubscribed in the Astronomical Community. Images also often contain additive noise, which makes denoising a mandatory step in post-processing the data before further data analysis. In order to maximize the efficiency and information gain in the post-processing of astronomical imaging, we turn to machine learning. We propose ASTRO U-NET, a convolutional neural network for image denoising and enhancement. For a proof-of-concept, we use HST images from Wide Field Camera 3 instrument UV/visible channel with F555W and F606W filters. Our network is able to produce images with noise characteristics as if they are obtained with twice the exposure time, and with minimum bias or information loss. From these images, we are able to recover 95.9 per cent of stars with an average flux error of 2.26 per cent. Furthermore, the images have, on average, 1.63 times higher signal-to-noise ratio than the input noisy images, equivalent to the stacking of at least three input images, which means a significant reduction in the telescope time needed for future astronomical imaging campaigns.