2022
Cone structures and parabolic geometries
HWANG, Jun-Muk a Katharina NEUSSERZákladní údaje
Originální název
Cone structures and parabolic geometries
Autoři
HWANG, Jun-Muk a Katharina NEUSSER (40 Rakousko, garant, domácí)
Vydání
Mathematische Annalen, Germany, Springer Berlin Heidelberg, 2022, 0025-5831
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.400
Kód RIV
RIV/00216224:14310/22:00125176
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000659801200001
EID Scopus
2-s2.0-85107502551
Klíčová slova anglicky
Cone structures; Rational homogeneous space; Varieties of minimal rational tangents; Cartan connections; Parabolic geometry; Filtered manifolds
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 6. 2022 14:48, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
A cone structure on a complex manifold M is a closed submanifold C⊂PTM of the projectivized tangent bundle which is submersive over M. A conic connection on C specifies a distinguished family of curves on M in the directions specified by C. There are two common sources of cone structures and conic connections, one in differential geometry and another in algebraic geometry. In differential geometry, we have cone structures induced by the geometric structures underlying holomorphic parabolic geometries, a classical example of which is the null cone bundle of a holomorphic conformal structure. In algebraic geometry, we have the cone structures consisting of varieties of minimal rational tangents (VMRT) given by minimal rational curves on uniruled projective manifolds. The local invariants of the cone structures in parabolic geometries are given by the curvature of the parabolic geometries, the nature of which depend on the type of the parabolic geometry, i.e., the type of the fibers of C→M. For the VMRT-structures, more intrinsic invariants of the conic connections which do not depend on the type of the fiber play important roles. We study the relation between these two different aspects for the cone structures induced by parabolic geometries associated with a long simple root of a complex simple Lie algebra. As an application, we obtain a local differential-geometric version of the global algebraic-geometric recognition theorem due to Mok and Hong–Hwang. In our local version, the role of rational curves is completely replaced by appropriate torsion conditions on the conic connection.
Návaznosti
GX19-28628X, projekt VaV |
|