J 2021

CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation

ZABRADY, Katerina, Matej ZABRADY, Peter KOLESÁR, Arthur W. H. LI, Aidan J. DOHERTY et. al.

Základní údaje

Originální název

CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation

Autoři

ZABRADY, Katerina, Matej ZABRADY, Peter KOLESÁR (703 Slovensko, domácí), Arthur W. H. LI a Aidan J. DOHERTY

Vydání

Nature Communications, London, Nature Publishing Group, 2021, 2041-1723

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10603 Genetics and heredity

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 17.694

Kód RIV

RIV/00216224:14310/21:00123820

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000665032700012

Klíčová slova anglicky

CRISPR-Cas systems; DNA; DNA repair enzymes; Enzyme mechanisms

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 18. 1. 2022 18:19, Mgr. Marie Šípková, DiS.

Anotace

V originále

CRISPR-Cas pathways provide prokaryotes with acquired "immunity" against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation. CAPPs are putative Primase-Polymerases associated with CRISPR-Cas operons. Here, the authors show CAPPs genetic and physical association with Cas1 and Cas2, their capacity to function as DNA-dependent DNA primases and DNA polymerases, and that Cas1-Cas2 complex adjacent to CAPP has bona fide spacer integration activity.