2022
Dynamics of bipolar HiPIMS discharges by plasma potential probe measurements
ZANÁŠKA, Michal, Daniel LUNDIN, Nils BRENNING, Hao DU, Pavel DVOŘÁK et. al.Základní údaje
Originální název
Dynamics of bipolar HiPIMS discharges by plasma potential probe measurements
Autoři
ZANÁŠKA, Michal (garant), Daniel LUNDIN, Nils BRENNING, Hao DU, Pavel DVOŘÁK (203 Česká republika, domácí), Petr VAŠINA (203 Česká republika, domácí) a Ulf HELMERSSON
Vydání
Plasma Sources Science and Technology, IOP Publishing Ltd. 2022, 0963-0252
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10305 Fluids and plasma physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.800
Kód RIV
RIV/00216224:14310/22:00119622
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000757007300001
Klíčová slova anglicky
high-power impulse magnetron sputtering; bipolar HiPIMS; plasma potential; ion acceleration
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 2. 2024 13:30, Mgr. Marie Šípková, DiS.
Anotace
V originále
The plasma potential at a typical substrate position is studied during the positive pulse of a bipolar high-power impulse magnetron sputtering (bipolar HiPIMS) discharge with a Cu target. The goal of the study is to identify suitable conditions for achieving ion acceleration independent on substrate grounding. We find that the time-evolution of the plasma potential during the positive pulse can be separated into several distinct phases, which are highly dependent on the discharge conditions. This includes exploring the influence of the working gas pressure (0.3 – 2 Pa), HiPIMS peak current (10 – 70 A corresponding to 0.5 – 3.5 A/cm2), HiPIMS pulse length (5 – 60 μs) and the amplitude of the positive voltage U+ applied during the positive pulse (0 – 150 V). At low enough pressure, high enough HiPIMS peak current and long enough HiPIMS pulse length, the plasma potential at a typical substrate position is seen to be close to 0 V for a certain time interval (denoted phase B) during the positive pulse. At the same time, spatial mapping of the plasma potential inside the magnetic trap region revealed an elevated value of the plasma potential during phase B. These two plasma potential characteristics are identified as suitable for achieving ion acceleration in the target region. Moreover, by investigating the target current and ion saturation current at the chamber walls, we describe a simple theory linking the value of the plasma potential profile to the ratio of the available target electron current and ion saturation current at the wall.
Návaznosti
GA19-00579S, projekt VaV |
| ||
90097, velká výzkumná infrastruktura |
|