2021
Mixed Models as a Tool for Comparing Groups of Time Series in Plant Sciences
SPYROGLOU, Ioannis, Jan SKALÁK, Veronika BALAKHONOVA, Z. BENEDIKTY, A.G. RIGAS et. al.Základní údaje
Originální název
Mixed Models as a Tool for Comparing Groups of Time Series in Plant Sciences
Autoři
SPYROGLOU, Ioannis (300 Řecko, domácí), Jan SKALÁK (203 Česká republika, domácí), Veronika BALAKHONOVA (643 Rusko, domácí), Z. BENEDIKTY, A.G. RIGAS a Jan HEJÁTKO (203 Česká republika, garant, domácí)
Vydání
PLANTS-BASEL, BASEL, MDPI, 2021, 2223-7747
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10611 Plant sciences, botany
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.658
Kód RIV
RIV/00216224:14740/21:00119682
Organizační jednotka
Středoevropský technologický institut
UT WoS
000622990500001
Klíčová slova anglicky
Arabidopsis; linear mixed models; time series analysis; ARIMA
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 2. 3. 2022 09:19, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Plants adapt to continual changes in environmental conditions throughout their life spans. High-throughput phenotyping methods have been developed to noninvasively monitor the physiological responses to abiotic/biotic stresses on a scale spanning a long time, covering most of the vegetative and reproductive stages. However, some of the physiological events comprise almost immediate and very fast responses towards the changing environment which might be overlooked in long-term observations. Additionally, there are certain technical difficulties and restrictions in analyzing phenotyping data, especially when dealing with repeated measurements. In this study, a method for comparing means at different time points using generalized linear mixed models combined with classical time series models is presented. As an example, we use multiple chlorophyll time series measurements from different genotypes. The use of additional time series models as random effects is essential as the residuals of the initial mixed model may contain autocorrelations that bias the result. The nature of mixed models offers a viable solution as these can incorporate time series models for residuals as random effects. The results from analyzing chlorophyll content time series show that the autocorrelation is successfully eliminated from the residuals and incorporated into the final model. This allows the use of statistical inference.
Návaznosti
EF16_026/0008446, projekt VaV |
| ||
GJ19-23108Y, projekt VaV |
| ||
LQ1601, projekt VaV |
|