2021
Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids
MRÁZIKOVÁ, Klaudia, Jiří ŠPONER, Vojtěch MLÝNSKÝ, Pascal AUFFINGER, Holger KRUSE et. al.Základní údaje
Originální název
Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids
Autoři
MRÁZIKOVÁ, Klaudia (703 Slovensko, domácí), Jiří ŠPONER, Vojtěch MLÝNSKÝ, Pascal AUFFINGER a Holger KRUSE (garant)
Vydání
Journal of Chemical Information and Modeling, American Chemical Society, 2021, 1549-9596
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10608 Biochemistry and molecular biology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.162
Kód RIV
RIV/00216224:14310/21:00124385
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000757001900031
Klíčová slova anglicky
MOLECULAR-DYNAMICS SIMULATIONS; POLARIZABLE FORCE-FIELD; BASIS-SETS; BASE STACKING; B-DNA; NUMERICAL-INTEGRATION; AB-INITIO; RNA; COMPLEXES; TETRALOOP
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 5. 2022 15:51, Mgr. Marie Šípková, DiS.
Anotace
V originále
The lone-pair center dot center dot center dot pi (lp center dot center dot center dot pi) (deoxy)ribose center dot center dot center dot nucleobase stacking is a recurring interaction in Z-DNA and RNAs that is characterized by subvan der Waals lp center dot center dot center dot pi contacts (<3.0 A). It is a part of the structural signature of CpG Z-step motifs in Z-DNA and r(UNCG) tetraloops that are known to behave poorly in molecular dynamics (MD) simulations. Although the exact origin of the MD simulation issues remains unclear, a significant part of the problem might be due to an imbalanced description of nonbonded interactions, including the characteristic lp center dot center dot center dot pi stacking. To gain insights into the links between lp center dot center dot center dot pi stacking and MD, we present an in-depth comparison between accurate large-basis-set double-hybrid Kohn-Sham density functional theory calculations DSD-BLYP-D3/ma-def2-QZVPP (DHDF-D3) and data obtained with the nonbonded potential of the AMBER force field (AFF) for NpN Z-steps (N = G, A, C, and U). Among other differences, we found that the AFF overestimates the DHDF-D3 lp center dot center dot center dot pi distances by similar to 0.1-0.2 A, while the deviation between the DHDF-D3 and AFF descriptions sharply increases in the short-range region of the interaction. Based on atom-in-molecule polarizabilities and symmetry-adapted perturbation theory analysis, we inferred that the DHDF-D3 versus AFF differences partly originate in identical nucleobase carbon atom Lennard-Jones (LJ) parameters despite the presence/absence of connected electron-withdrawing groups that lead to different effective volumes or vdW radii. Thus, to precisely model the very short CpG lp center dot center dot center dot pi contact distances, we recommend revision of the nucleobase atom LJ parameters. Additionally, we suggest that the large discrepancy between DHDF-D3 and AFF short-range repulsive part of the interaction energy potential may significantly contribute to the poor performances of MD simulations of nucleic acid systems containing Z-steps. Understanding where, and if possible why, the point-charge-type effective potentials reach their limits is vital for developing next-generation FFs and for addressing specific issues in contemporary MD simulations.