2022
Nearest-neighbor Search from Large Datasets using Narrow Sketches
NAOYA, Higuchi, Imamura YASUNOBU, Vladimír MÍČ, Shinohara TAKESHI, Hirata KOUICHI et. al.Základní údaje
Originální název
Nearest-neighbor Search from Large Datasets using Narrow Sketches
Autoři
NAOYA, Higuchi, Imamura YASUNOBU, Vladimír MÍČ (203 Česká republika, garant, domácí), Shinohara TAKESHI, Hirata KOUICHI a Kuboyama TETSUJI
Vydání
Portugal, Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods - ICPRAM, od s. 401-410, 10 s. 2022
Nakladatel
SciTePress
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14330/22:00125541
Organizační jednotka
Fakulta informatiky
ISBN
978-989-758-549-4
UT WoS
000819122200044
Klíčová slova anglicky
Narrow Sketch;Nearest-neighbor Search;Large Dataset;Sketch Enumeration;Partially Restored Distance
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 5. 2024 12:44, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We consider the nearest-neighbor search on large-scale high-dimensional datasets that cannot fit in the main memory. Sketches are bit strings that compactly express data points. Although it is usually thought that wide sketches are needed for high-precision searches, we use relatively narrow sketches such as 22-bit or 24-bit, to select a small set of candidates for the search. We use an asymmetric distance between data points and sketches as the criteria for candidate selection, instead of traditionally used Hamming distance. It can be considered a distance partially restoring quantization error. We utilize an efficient one-by-one sketch enumeration in the order of the partially restored distance to realize a fast candidate selection. We use two datasets to demonstrate the effectiveness of the method: YFCC100M-HNfc6 consisting of about 100 million 4,096 dimensional image descriptors and DEEP1B consisting of 1 billion 96 dimensional vectors. Using a standard desktop computer, we condu cted a nearest-neighbor search for a query on datasets stored on SSD, where vectors are represented by 8-bit integers. The proposed method executes the search in 5.8 seconds for the 400GB dataset YFCC100M, and 0.24 seconds for the 100GB dataset DEEP1B, while keeping the recall of 90%.
Návaznosti
EF16_019/0000822, projekt VaV |
|