J 2022

Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom

CUYACOT, Ben Joseph Rubiato, Jan NOVOTNÝ, Raphael J. F. BERGER, Stanislav KOMOROVSKY, Radek MAREK et. al.

Basic information

Original name

Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom

Authors

CUYACOT, Ben Joseph Rubiato (608 Philippines, belonging to the institution), Jan NOVOTNÝ (203 Czech Republic, belonging to the institution), Raphael J. F. BERGER (40 Austria), Stanislav KOMOROVSKY (703 Slovakia) and Radek MAREK (203 Czech Republic, guarantor, belonging to the institution)

Edition

Chemistry - A European Journal, Wiley-VCH, 2022, 0947-6539

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10400 1.4 Chemical sciences

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 4.300

RIV identification code

RIV/00216224:14740/22:00119735

Organization unit

Central European Institute of Technology

UT WoS

000772517400001

Keywords in English

spin-orbit coupling;electron charge density;bond distance;bond theory;quantum chemistry

Tags

Tags

International impact, Reviewed
Změněno: 13/2/2023 17:22, Mgr. Pavla Foltynová, Ph.D.

Abstract

V originále

Relativistic effects are known to alter the chemical bonds and spectroscopic properties of heavy-element compounds. In this work, we introduce the concept of spin–orbit (SO) electronegativity of a heavy atom, as reflected by an SO-induced change in the interatomic distance between the heavy atom (HA) and a neighboring light atom (LA). We provide a transparent interpretation of these SO effects by using the concept of spin–orbit electron deformation density (SO-EDD). Spin–orbit coupling at the HA induces rearrangement of the electron density for the scalar-relativistically optimized geometry that, in turn, exerts a new force on the LA. The resulting expansion or contraction of the HA−LA bond depends on the nature and electron configuration of the HA. In addition, we quantify the change in atomic electronegativity induced by SO coupling for a series of hydrides, thereby complementing the SO-EDD picture. The trends in the SO-induced electronegativity and the HA−LA bond length across the periodic table of elements are demonstrated and interpreted, and also linked, intuitively, with the SO-induced NMR shielding at the LA.

Links

GA21-06991S, research and development project
Name: Relativistické efekty v paramagnetické NMR spektroskopii (Acronym: RELMAG)
Investor: Czech Science Foundation, Relativistic Effects in Paramagnetic NMR Spectroscopy
MUNI/A/1412/2021, interní kód MU
Name: Výzkum geologických, biologických a pokročilých syntetických materiálů metodami analytickými a fyzikálně-chemickými (Acronym: ANFYZCHEM)
Investor: Masaryk University, Research of geological, biological and advanced synthetic materials by analytical and physico-chemical methods

Files attached