CUYACOT, Ben Joseph Rubiato, Jan NOVOTNÝ, Raphael J. F. BERGER, Stanislav KOMOROVSKY and Radek MAREK. Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom. Chemistry - A European Journal. Wiley-VCH, 2022, vol. 28, No 24, p. "e202200277", 7 pp. ISSN 0947-6539. Available from: https://dx.doi.org/10.1002/chem.202200277.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom
Authors CUYACOT, Ben Joseph Rubiato (608 Philippines, belonging to the institution), Jan NOVOTNÝ (203 Czech Republic, belonging to the institution), Raphael J. F. BERGER (40 Austria), Stanislav KOMOROVSKY (703 Slovakia) and Radek MAREK (203 Czech Republic, guarantor, belonging to the institution).
Edition Chemistry - A European Journal, Wiley-VCH, 2022, 0947-6539.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10400 1.4 Chemical sciences
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
WWW DOI: 10.1002/chem.202200277
Impact factor Impact factor: 4.300
RIV identification code RIV/00216224:14740/22:00119735
Organization unit Central European Institute of Technology
Doi http://dx.doi.org/10.1002/chem.202200277
UT WoS 000772517400001
Keywords in English spin-orbit coupling;electron charge density;bond distance;bond theory;quantum chemistry
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Pavla Foltynová, Ph.D., učo 106624. Changed: 13/2/2023 17:22.
Abstract
Relativistic effects are known to alter the chemical bonds and spectroscopic properties of heavy-element compounds. In this work, we introduce the concept of spin–orbit (SO) electronegativity of a heavy atom, as reflected by an SO-induced change in the interatomic distance between the heavy atom (HA) and a neighboring light atom (LA). We provide a transparent interpretation of these SO effects by using the concept of spin–orbit electron deformation density (SO-EDD). Spin–orbit coupling at the HA induces rearrangement of the electron density for the scalar-relativistically optimized geometry that, in turn, exerts a new force on the LA. The resulting expansion or contraction of the HA−LA bond depends on the nature and electron configuration of the HA. In addition, we quantify the change in atomic electronegativity induced by SO coupling for a series of hydrides, thereby complementing the SO-EDD picture. The trends in the SO-induced electronegativity and the HA−LA bond length across the periodic table of elements are demonstrated and interpreted, and also linked, intuitively, with the SO-induced NMR shielding at the LA.
Links
GA21-06991S, research and development projectName: Relativistické efekty v paramagnetické NMR spektroskopii (Acronym: RELMAG)
Investor: Czech Science Foundation, Relativistic Effects in Paramagnetic NMR Spectroscopy
MUNI/A/1412/2021, interní kód MUName: Výzkum geologických, biologických a pokročilých syntetických materiálů metodami analytickými a fyzikálně-chemickými (Acronym: ANFYZCHEM)
Investor: Masaryk University, Research of geological, biological and advanced synthetic materials by analytical and physico-chemical methods
PrintDisplayed: 11/9/2024 12:14