MIHÁLIKOVÁ, Ivana, Martin FRIÁK, Matej PIVOLUSKA, Martin PLESCH, Martin SAIP a Mojmír ŠOB. Best-Practice Aspects of Quantum-Computer Calculations: A Case Study of the Hydrogen Molecule. MOLECULES. SWITZERLAND: MDPI, 2022, roč. 27, č. 3, s. 1-15. ISSN 1420-3049. Dostupné z: https://dx.doi.org/10.3390/molecules27030597.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Best-Practice Aspects of Quantum-Computer Calculations: A Case Study of the Hydrogen Molecule
Autoři MIHÁLIKOVÁ, Ivana (703 Slovensko, domácí), Martin FRIÁK (203 Česká republika, domácí), Matej PIVOLUSKA (703 Slovensko, domácí), Martin PLESCH (703 Slovensko, domácí), Martin SAIP (203 Česká republika, domácí) a Mojmír ŠOB (203 Česká republika, garant, domácí).
Vydání MOLECULES, SWITZERLAND, MDPI, 2022, 1420-3049.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10301 Atomic, molecular and chemical physics
Stát vydavatele Švýcarsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 4.600
Kód RIV RIV/00216224:14310/22:00125831
Organizační jednotka Přírodovědecká fakulta
Doi http://dx.doi.org/10.3390/molecules27030597
UT WoS 000761013800001
Klíčová slova anglicky quantum computers; hydrogen molecule; variational quantum eigensolver; circuit architecture; quantum computing; quantum chemistry; COBYLA; SPSA
Štítky J-Q2, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Marie Šípková, DiS., učo 437722. Změněno: 22. 3. 2023 16:01.
Anotace
Quantum computers are reaching one crucial milestone after another. Motivated by their progress in quantum chemistry, we performed an extensive series of simulations of quantum-computer runs that were aimed at inspecting the best-practice aspects of these calculations. In order to compare the performance of different setups, the ground-state energy of the hydrogen molecule was chosen as a benchmark for which the exact solution exists in the literature. Applying the variational quantum eigensolver (VQE) to a qubit Hamiltonian obtained by the Bravyi–Kitaev transformation, we analyzed the impact of various computational technicalities. These included (i) the choice of the optimization methods, (ii) the architecture of the quantum circuits, as well as (iii) the different types of noise when simulating real quantum processors. On these, we eventually performed a series of experimental runs as a complement to our simulations. The simultaneous perturbation stochastic approximation (SPSA) and constrained optimization by linear approximation (COBYLA) optimization methods clearly outperformed the Nelder–Mead and Powell methods. The results obtained when using the Ry variational form were better than those obtained when the RyRz form was used. The choice of an optimum entangling layer was sensitively interlinked with the choice of the optimization method. The circular entangling layer was found to worsen the performance of the COBYLA method, while the full-entangling layer improved it. All four optimization methods sometimes led to an energy that corresponded to an excited state rather than the ground state. We also show that a similarity analysis of measured probabilities can provide a useful insight.
Návaznosti
MUNI/G/1596/2019, interní kód MUNázev: Development of algorithms for application of quantum computers in electronic-structure calculations in solid-state physics and chemistry (Akronym: Qubits4PhysChem)
Investor: Masarykova univerzita, Development of algorithms for application of quantum computers in electronic-structure calculations in solid-state physics and chemistry, INTERDISCIPLINARY - Mezioborové výzkumné projekty
VytisknoutZobrazeno: 25. 7. 2024 18:41