2022
Exploring attractor bifurcations in Boolean networks
BENEŠ, Nikola, Luboš BRIM, Jakub KADLECAJ, Samuel PASTVA, David ŠAFRÁNEK et. al.Základní údaje
Originální název
Exploring attractor bifurcations in Boolean networks
Autoři
BENEŠ, Nikola (203 Česká republika, domácí), Luboš BRIM (203 Česká republika, domácí), Jakub KADLECAJ (703 Slovensko, domácí), Samuel PASTVA (703 Slovensko, domácí) a David ŠAFRÁNEK (203 Česká republika, garant, domácí)
Vydání
BMC Bioinformatics, 2022, 1471-2105
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.000
Kód RIV
RIV/00216224:14330/22:00125836
Organizační jednotka
Fakulta informatiky
UT WoS
000793836800001
Klíčová slova anglicky
Boolean networks; Attractor bifurcation; Symbolic computation; Software tool; type-1 interferons
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 3. 2023 10:53, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Background Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors–subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. Results In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method’s applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. Conclusions The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system’s stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
Návaznosti
MUNI/A/1145/2021, interní kód MU |
| ||
MUNI/G/1771/2020, interní kód MU |
|