2022
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review
DREVET, Richard Gaetan Paul a Hicham BENHAYOUNEZákladní údaje
Originální název
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review
Autoři
DREVET, Richard Gaetan Paul (250 Francie, garant, domácí) a Hicham BENHAYOUNE
Vydání
Coatings, Basel, MDPI, 2022, 2079-6412
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10305 Fluids and plasma physics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.400
Kód RIV
RIV/00216224:14310/22:00125851
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000785537200001
Klíčová slova anglicky
electrodeposition; pulsed current; biomaterials; coating; calcium phosphate; hydroxyapatite; titanium; bone implant; ionic substitution
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 5. 2022 11:50, Mgr. Marie Šípková, DiS.
Anotace
V originále
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.