J 2022

Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review

DREVET, Richard Gaetan Paul a Hicham BENHAYOUNE

Základní údaje

Originální název

Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review

Autoři

DREVET, Richard Gaetan Paul (250 Francie, garant, domácí) a Hicham BENHAYOUNE

Vydání

Coatings, Basel, MDPI, 2022, 2079-6412

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10305 Fluids and plasma physics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.400

Kód RIV

RIV/00216224:14310/22:00125851

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000785537200001

Klíčová slova anglicky

electrodeposition; pulsed current; biomaterials; coating; calcium phosphate; hydroxyapatite; titanium; bone implant; ionic substitution

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 5. 2022 11:50, Mgr. Marie Šípková, DiS.

Anotace

V originále

This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.