2022
Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
ANETTA, Krištof, Aleš HORÁK, Tomasz JADCZYK, Wojciech WOJAKOWSKI, Krystian WITA et. al.Základní údaje
Originální název
Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
Autoři
ANETTA, Krištof (703 Slovensko, domácí), Aleš HORÁK (203 Česká republika, domácí), Tomasz JADCZYK (616 Polsko), Wojciech WOJAKOWSKI (616 Polsko) a Krystian WITA (616 Polsko)
Vydání
Journal of Personalized Medicine, Basel, MDPI, 2022, 2075-4426
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.508 v roce 2021
Kód RIV
RIV/00216224:14330/22:00125875
Organizační jednotka
Fakulta informatiky
UT WoS
000818311800001
Klíčová slova anglicky
electronic health records; deep learning; text analysis; diagnosis prediction; Polish language
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2023 10:01, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Electronic health records naturally contain most of the medical information in the form of doctor’s notes as unstructured or semi-structured texts. Current deep learning text analysis approaches allow researchers to reveal the inner semantics of text information and even identify hidden consequences that can offer extra decision support to doctors. In the presented article, we offer a new automated analysis of Polish summary texts of patient hospitalizations. The presented models were found to be able to predict the final diagnosis with almost 70% accuracy based just on the patient’s medical history (only 132 words on average), with possible accuracy increases when adding further sentences from hospitalization results; even one sentence was found to improve the results by 4%, and the best accuracy of 78% was achieved with five extra sentences. In addition to detailed descriptions of the data and methodology, we present an evaluation of the analysis using more than 50,000 Polish cardiology patient texts and dive into a detailed error analysis of the approach. The results indicate that the deep analysis of just the medical history summary can suggest the direction of diagnosis with a high probability that can be further increased just by supplementing the records with further examination results.
Návaznosti
EF19_073/0016943, projekt VaV |
| ||
LM2018101, projekt VaV |
| ||
MUNI/IGA/1326/2021, interní kód MU |
|