2022
A machine learning algorithm for electrocardiographic fQRS quantification validated on multi-center data
VILLA, Amalia, Bert VANDENBERK, Tuomas KENTTA, Sebastian INGELAERE, Heikki V. HUIKURI et. al.Základní údaje
Originální název
A machine learning algorithm for electrocardiographic fQRS quantification validated on multi-center data
Autoři
VILLA, Amalia (garant), Bert VANDENBERK, Tuomas KENTTA, Sebastian INGELAERE, Heikki V. HUIKURI, Markus ZABEL, Tim FRIEDE, Christian STICHERLING, Anton TUINENBURG, Marek MALÍK (203 Česká republika, domácí), Sabine VAN HUFFEL, Rik WILLEMS a Carolina VARON
Vydání
Nature Scientific Reports, London, NATURE RESEARCH, 2022, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30201 Cardiac and Cardiovascular systems
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600
Kód RIV
RIV/00216224:14110/22:00125981
Organizační jednotka
Lékařská fakulta
UT WoS
000787775900072
Klíčová slova anglicky
electrocardiographic fQRS quantification; machine learning algorithm
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 6. 2022 14:37, Mgr. Tereza Miškechová
Anotace
V originále
Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been associated with an increased risk of all-cause mortality and arrhythmia in patients with cardiovascular disease. However, current binary visual analysis is prone to intra- and inter-observer variability and different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS is needed and could further improve risk stratification of these patients. We present an automated method for fQRS detection and quantification. First, a novel robust QRS complex segmentation strategy is proposed, which combines multi-lead information and excludes abnormal heartbeats automatically. Afterwards extracted features, based on variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of baseline-crossings of the ECG, were used to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non-fragmented ECG-traces using multi-center data and combining different fQRS criteria used in clinical settings. The best model was trained on the combination of two independent previously annotated datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular beats during atrial fibrillation. These results demonstrate that the proposed approach could be relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for further clinical application of the developed automated fQRS algorithm.