2022
Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape
BORUVKA, Lubos, Radim VASAT, Vit SRAMEK, Katerina Neudertova HELLEBRANDOVA, Vera FADRHONSOVA et. al.Základní údaje
Originální název
Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape
Autoři
BORUVKA, Lubos, Radim VASAT, Vit SRAMEK, Katerina Neudertova HELLEBRANDOVA, Vera FADRHONSOVA, Milan SÁŇKA (203 Česká republika, domácí), Lenka PAVLU, Ondřej SÁŇKA (203 Česká republika, garant, domácí), Oldrich VACEK, Karel NEMECEK, Shahin NOZARI a Vincent Yaw Oppong SARKODIE
Vydání
SOIL AND WATER RESEARCH, CZECH REPUBLIC, CZECH ACADEMY AGRICULTURAL SCIENCES, 2022, 1801-5395
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10503 Water resources
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.300
Kód RIV
RIV/00216224:14310/22:00126065
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000753949300001
Klíčová slova anglicky
carbon stocks; digital soil mapping; environmental covariates; random forests; spatial distribution; terrain attributes
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 7. 2022 10:31, Mgr. Marie Šípková, DiS.
Anotace
V originále
Forest soils have a high potential to store carbon and thus mitigate climate change. The information on spatial distribution of soil organic carbon (SOC) stocks is thus very important. This study aims to analyse the importance of environmental predictors for forest SOC stock prediction at the regional and national scale in the Czech Republic. A big database of forest soil data for more than 7 000 sites was compiled from several surveys. SOC stocks were calculated from SOC content and bulk density for the topsoil mineral layer 0-30 cm. Spatial prediction models were developed separately for individual natural forest areas and for four subsets with different altitude range, using random forest method. The importance of environmental predictors in the models strongly differs between regions and altitudes. At lower altitudes, forest edaphic series and soil classes are strong predictors, while at higher altitudes the predictors related to topography become more important. The importance of soil classes depends on the pedodiversity level and on the difference in SOC stock between the classes. The contribution of forest types as predictors is limited when one (mostly coniferous) type dominates. Better prediction results can be obtained in smaller, but consistent regions, like some natural forest areas.
Návaznosti
QK1920163, projekt VaV |
|