J 2022

Methodological guidelines to estimate population-based health indicators using linked data and/or machine learning techniques

HANEEF, Romana, Mariken TIJHUIS, Rodolphe THIEBAUT, Ondřej MÁJEK, Ivan PRISTAS et. al.

Základní údaje

Originální název

Methodological guidelines to estimate population-based health indicators using linked data and/or machine learning techniques

Autoři

HANEEF, Romana (garant), Mariken TIJHUIS, Rodolphe THIEBAUT, Ondřej MÁJEK (203 Česká republika, domácí), Ivan PRISTAS, Hanna TOLENAN a Anne GALLAY

Vydání

ARCHIVES OF PUBLIC HEALTH, LONDON, BIOMED CENTRAL LTD, 2022, 0778-7367

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30304 Public and environmental health

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.300

Kód RIV

RIV/00216224:14110/22:00126141

Organizační jednotka

Lékařská fakulta

UT WoS

000738623200002

Klíčová slova anglicky

Data linkage; Linked data; Machine learning techniques; Artificial intelligence; Guidelines; Methodological guidelines; Statistical techniques; Population health research; Health indicators

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 28. 6. 2022 08:31, Mgr. Tereza Miškechová

Anotace

V originále

Background The capacity to use data linkage and artificial intelligence to estimate and predict health indicators varies across European countries. However, the estimation of health indicators from linked administrative data is challenging due to several reasons such as variability in data sources and data collection methods resulting in reduced interoperability at various levels and timeliness, availability of a large number of variables, lack of skills and capacity to link and analyze big data. The main objective of this study is to develop the methodological guidelines calculating population-based health indicators to guide European countries using linked data and/or machine learning (ML) techniques with new methods. Method We have performed the following step-wise approach systematically to develop the methodological guidelines: i. Scientific literature review, ii. Identification of inspiring examples from European countries, and iii. Developing the checklist of guidelines contents. Results We have developed the methodological guidelines, which provide a systematic approach for studies using linked data and/or ML-techniques to produce population-based health indicators. These guidelines include a detailed checklist of the following items: rationale and objective of the study (i.e., research question), study design, linked data sources, study population/sample size, study outcomes, data preparation, data analysis (i.e., statistical techniques, sensitivity analysis and potential issues during data analysis) and study limitations. Conclusions This is the first study to develop the methodological guidelines for studies focused on population health using linked data and/or machine learning techniques. These guidelines would support researchers to adopt and develop a systematic approach for high-quality research methods. There is a need for high-quality research methodologies using more linked data and ML-techniques to develop a structured cross-disciplinary approach for improving the population health information and thereby the population health.