2022
Mechanism-Based Design of Efficient PET Hydrolases
WEI, Ren, Gerlis VON HAUGWIT, Lara PFAFF, Jan MIČAN, Christoffel P. S. BADENHORST et. al.Základní údaje
Originální název
Mechanism-Based Design of Efficient PET Hydrolases
Autoři
WEI, Ren, Gerlis VON HAUGWIT, Lara PFAFF, Jan MIČAN (203 Česká republika, domácí), Christoffel P. S. BADENHORST, Weidong LIU, Gert WEBER, Harry P. AUSTIN, David BEDNÁŘ (203 Česká republika, domácí), Jiří DAMBORSKÝ (203 Česká republika, garant, domácí) a Uwe T. BORNSCHEUER
Vydání
ACS Catalysis, American Chemical Society, 2022, 2155-5435
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 12.900
Kód RIV
RIV/00216224:14310/22:00126169
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000778789200013
Klíčová slova anglicky
Hydrolase; enzymatic degradation; interfacial biocatalysis; plastic recycling; protein engineering; polyethylene terephthalate (PET); product inhibition; thermostability
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 3. 2023 22:07, Mgr. Michaela Hylsová, Ph.D.
Anotace
V originále
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Návaznosti
EF17_043/0009632, projekt VaV |
| ||
857560, interní kód MU (Kód CEP: EF17_043/0009632) |
|