2021
An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
SCHWARZEROVÁ, Jana, Adam BAJGER, I. PIERDOU, Lubomír POPELÍNSKÝ, Karel SEDLÁŘ et. al.Základní údaje
Originální název
An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
Název česky
An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
Autoři
SCHWARZEROVÁ, Jana (203 Česká republika), Adam BAJGER (203 Česká republika, domácí), I. PIERDOU, Lubomír POPELÍNSKÝ (203 Česká republika, domácí), Karel SEDLÁŘ (203 Česká republika) a W. WECKWERTH
Vydání
Houston, TX, USA, Proceedings of BIBM 2021, od s. 3075-3082, 8 s. 2021
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10602 Biology , Evolutionary biology
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/21:00126185
Organizační jednotka
Fakulta informatiky
ISBN
978-1-6654-0126-5
Klíčová slova česky
Machine Learning; Concept drift; Metabolomics Analysis; Biomedical engineering; Computational biomedical analysis; Metabolomic prediction
Klíčová slova anglicky
Machine Learning; Concept drift; Metabolomics Analysis; Biomedical engineering; Computational biomedical analysis; Metabolomic prediction
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 3. 2023 11:24, RNDr. Pavel Šmerk, Ph.D.
V originále
The most challenging applications of data analysis prediction are mostly related to scenarios, where the source data is being provided in a time course. As the distribution of the underlying reality shifts over a time, a classification model trained on the previously relevant data starts to yield incorrect predictions about the data that are relevant right now. This phenomenon in machine learning is called concept drift. Within biomedical data, one of the molecular networks that is most significantly changing over a time, is the metabolome. Using metabolomics analysis to biomedical applications, makes an ideal tool for preventive healthcare, pharmaceutical industry, and even ecology engineering. This study provides an innovated perspective on the analysis of metabolomics datasets using the concept of drift detection. The evaluation is based on two main goals. The first goal is connected to the concept drift detection in available metabolomics datasets and the second goal is to provide the assessment of commonly used tools, resulting in the best detection approach for a general metabolomics dataset.
Česky
The most challenging applications of data analysis prediction are mostly related to scenarios, where the source data is being provided in a time course. As the distribution of the underlying reality shifts over a time, a classification model trained on the previously relevant data starts to yield incorrect predictions about the data that are relevant right now. This phenomenon in machine learning is called concept drift. Within biomedical data, one of the molecular networks that is most significantly changing over a time, is the metabolome. Using metabolomics analysis to biomedical applications, makes an ideal tool for preventive healthcare, pharmaceutical industry, and even ecology engineering. This study provides an innovated perspective on the analysis of metabolomics datasets using the concept of drift detection. The evaluation is based on two main goals. The first goal is connected to the concept drift detection in available metabolomics datasets and the second goal is to provide the assessment of commonly used tools, resulting in the best detection approach for a general metabolomics dataset.