2022
A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling
SCHWARZEROVÁ, Jana, Aleš KOSTOVAL, Adam BAJGER, Lucia JAKUBÍKOVÁ, Iro PIERDOU et. al.Základní údaje
Originální název
A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling
Název česky
A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling
Autoři
SCHWARZEROVÁ, Jana (203 Česká republika), Aleš KOSTOVAL, Adam BAJGER (203 Česká republika, domácí), Lucia JAKUBÍKOVÁ (703 Slovensko, domácí), Iro PIERDOU, Lubomír POPELÍNSKÝ (203 Česká republika, domácí), K. SEDLÁŘ a Wolfram WECKWERTH
Vydání
Kamien Slaski, Information Technology in Biomedicine: 9th International Conference, ITIB 2022, od s. 498-509, 12 s. 2022
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Polsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/22:00126187
Organizační jednotka
Fakulta informatiky
ISBN
978-3-031-09134-6
ISSN
Klíčová slova česky
Biomedical analysis; Metabolomics; Machine learning; Prediction methods
Klíčová slova anglicky
Biomedical analysis; Metabolomics; Machine learning; Prediction methods
Změněno: 19. 4. 2024 00:29, RNDr. Pavel Šmerk, Ph.D.
V originále
Prediction models that rely on time series data are often affected by diminished predictive accuracy. This occurs from the causal relationships of the data that shift over time. Thus, the changing weights that are used to create prediction models lose their informational value. One way to correct this change is by using concept drift information. That is exactly what prediction models in biomedical applications need. Currently, metabolomics is at the forefront in modeling analysis for phenotype prediction, making it one of the most interesting candidates for biomedical prediction diagnosis. However, metabolomics datasets include dynamic information that can harm prediction modeling. This study presents a concept drift correction methods to account for dynamic changes that occur in metabolomics data for better prediction outcomes of phenotypes in a biomedical setting.
Česky
Prediction models that rely on time series data are often affected by diminished predictive accuracy. This occurs from the causal relationships of the data that shift over time. Thus, the changing weights that are used to create prediction models lose their informational value. One way to correct this change is by using concept drift information. That is exactly what prediction models in biomedical applications need. Currently, metabolomics is at the forefront in modeling analysis for phenotype prediction, making it one of the most interesting candidates for biomedical prediction diagnosis. However, metabolomics datasets include dynamic information that can harm prediction modeling. This study presents a concept drift correction methods to account for dynamic changes that occur in metabolomics data for better prediction outcomes of phenotypes in a biomedical setting.