KONVALINA, Ivo, Benjamin DANIEL, Martin ZOUHAR, Aleš PATÁK, Ilona MÜLLEROVÁ, Luděk FRANK, Jakub PIŇOS, Lukáš PRŮCHA, Tomáš RADLIČKA, Wolfgang S M WERNER a Eliška Materna MIKMEKOVÁ. Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer. NANOMATERIALS. SWITZERLAND: MDPI, 2021, roč. 11, č. 9, s. 2435-2452. ISSN 2079-4991. Dostupné z: https://dx.doi.org/10.3390/nano11092435.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer
Autoři KONVALINA, Ivo, Benjamin DANIEL, Martin ZOUHAR, Aleš PATÁK, Ilona MÜLLEROVÁ, Luděk FRANK, Jakub PIŇOS, Lukáš PRŮCHA, Tomáš RADLIČKA, Wolfgang S M WERNER a Eliška Materna MIKMEKOVÁ.
Vydání NANOMATERIALS, SWITZERLAND, MDPI, 2021, 2079-4991.
Další údaje
Typ výsledku Článek v odborném periodiku
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 5.719
Doi http://dx.doi.org/10.3390/nano11092435
Klíčová slova česky time-of-flight spectrometer; inelastic mean free path; density-functional theory; many-body perturbation theory; energy-loss spectrum; density of states; band structure; graphene
Štítky RIV ne
Změnil Změnil: Benjamin Daniel, Ph.D., učo 454075. Změněno: 21. 7. 2022 10:19.
Anotace
The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals. This situation motivated the present study, which summarizes pilot experiments for graphene on a new device intended to acquire electron energy-loss spectra (EELS) for low landing energies. Thanks to its unique properties, such as electrical conductivity and transparency, graphene is an ideal candidate for study at very low energies in the transmission mode of an electron microscope. The EELS are acquired by means of the very low-energy electron microspectroscopy of 2D crystals, using a dedicated ultra-high vacuum scanning low-energy electron microscope equipped with a time-of-flight (ToF) velocity analyzer. In order to verify our pilot results, we also simulate the EELS by means of density functional theory (DFT) and the many-body perturbation theory. Additional DFT calculations, providing both the total density of states and the band structure, illustrate the graphene loss features. We utilize the experimental EELS data to derive IMFP values using the so-called log-ratio method.
VytisknoutZobrazeno: 24. 8. 2024 18:11