2022
Review of cell image synthesis for image processing
ULMAN, Vladimír a David WIESNERZákladní údaje
Originální název
Review of cell image synthesis for image processing
Autoři
ULMAN, Vladimír (203 Česká republika, garant) a David WIESNER (203 Česká republika, domácí)
Vydání
1st ed. Neuveden, Biomedical Image Synthesis and Simulation - Methods and Applications, od s. 447-489, 43 s. The MICCAI Society book Series, 2022
Nakladatel
Elsevier
Další údaje
Jazyk
angličtina
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14330/22:00126356
Organizační jednotka
Fakulta informatiky
ISBN
978-0-12-824349-7
Klíčová slova anglicky
Image synthesis; Deep learning; Cell segmentation; Ground-truth data; Biomedical application
Štítky
Příznaky
Mezinárodní význam
Změněno: 6. 2. 2023 22:26, RNDr. Vladimír Ulman, Ph.D.
Anotace
V originále
Opposites attract, also in the biomedical field and during the processing of cell microscopy images. In the same spirit, image processing, the indispensable analyst tool, is often supported by image synthesis applications. Image synthesis is a methodology implemented in computer program intended to create artificial cell images similar to images from real microscopy. The generation of artificial images has had a stable tradition in image processing and is currently gaining more attention with the rising popularity of deep learning. This chapter reviews the current state of cell image synthesis, including terminology, broader context, goals, and peculiarities. It offers a brief historical introspection and, most importantly, surveys all contemporary methodology and applications. The light descriptions of procedural methods with explicit parameters and deep learning-based methods with implicit parameters, such as the generative adversarial networks, are also included. Last but not least, this chapter discusses what kind of artificial images and ground-truth data the methods generate, including the subsequent usage of this data for image processing such as cell segmentation or data augmentation for deep learning. Among the covered methods are approaches generating artificial cell microscopy images of fluorescence stained proteins, actin filaments, chromatin stained nuclei, membranes, and even populations of cells or full cells in differential inference contrast microscopy, to name a few. The generated data is often accompanied by ground truth annotation, whose forms are also discussed, including cell detection markers, full cell segmentation, and cell tracking data.
Návaznosti
MUNI/A/1145/2021, interní kód MU |
|