C 2022

Review of cell image synthesis for image processing

ULMAN, Vladimír a David WIESNER

Základní údaje

Originální název

Review of cell image synthesis for image processing

Autoři

ULMAN, Vladimír (203 Česká republika, garant) a David WIESNER (203 Česká republika, domácí)

Vydání

1st ed. Neuveden, Biomedical Image Synthesis and Simulation - Methods and Applications, od s. 447-489, 43 s. The MICCAI Society book Series, 2022

Nakladatel

Elsevier

Další údaje

Jazyk

angličtina

Typ výsledku

Kapitola resp. kapitoly v odborné knize

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

tištěná verze "print"

Odkazy

Kód RIV

RIV/00216224:14330/22:00126356

Organizační jednotka

Fakulta informatiky

ISBN

978-0-12-824349-7

Klíčová slova anglicky

Image synthesis; Deep learning; Cell segmentation; Ground-truth data; Biomedical application

Štítky

Příznaky

Mezinárodní význam
Změněno: 6. 2. 2023 22:26, RNDr. Vladimír Ulman, Ph.D.

Anotace

V originále

Opposites attract, also in the biomedical field and during the processing of cell microscopy images. In the same spirit, image processing, the indispensable analyst tool, is often supported by image synthesis applications. Image synthesis is a methodology implemented in computer program intended to create artificial cell images similar to images from real microscopy. The generation of artificial images has had a stable tradition in image processing and is currently gaining more attention with the rising popularity of deep learning. This chapter reviews the current state of cell image synthesis, including terminology, broader context, goals, and peculiarities. It offers a brief historical introspection and, most importantly, surveys all contemporary methodology and applications. The light descriptions of procedural methods with explicit parameters and deep learning-based methods with implicit parameters, such as the generative adversarial networks, are also included. Last but not least, this chapter discusses what kind of artificial images and ground-truth data the methods generate, including the subsequent usage of this data for image processing such as cell segmentation or data augmentation for deep learning. Among the covered methods are approaches generating artificial cell microscopy images of fluorescence stained proteins, actin filaments, chromatin stained nuclei, membranes, and even populations of cells or full cells in differential inference contrast microscopy, to name a few. The generated data is often accompanied by ground truth annotation, whose forms are also discussed, including cell detection markers, full cell segmentation, and cell tracking data.

Návaznosti

MUNI/A/1145/2021, interní kód MU
Název: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace XI. (Akronym: SV-FI MAV XI.)
Investor: Masarykova univerzita, Rozsáhlé výpočetní systémy: modely, aplikace a verifikace XI.