2022
Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase
PRAKINEE, Kridsadakorn, Aisaraphon PHINTHA, Surawit VISITSATTHAWONG, Narin LAWAN, Jeerus SUCHARITAKUL et. al.Základní údaje
Originální název
Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase
Autoři
PRAKINEE, Kridsadakorn, Aisaraphon PHINTHA, Surawit VISITSATTHAWONG, Narin LAWAN, Jeerus SUCHARITAKUL, Chadaporn KANTIWIRIYAWANITCH, Jiří DAMBORSKÝ (203 Česká republika, garant, domácí), Penchit CHITNUMSUB, Van Pee KARL-HEINZ a Pimchai CHAIYEN
Vydání
NATURE CATALYSIS, ENGLAND, NATURE PORTFOLIO, 2022, 2520-1158
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 37.800
Kód RIV
RIV/00216224:14310/22:00126374
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000812063200001
Klíčová slova anglicky
TRYPTOPHAN 7-HALOGENASE; BIOCATALYTIC SCOPE; MOLECULAR-DYNAMICS; KINETIC MECHANISM; CHLORINATION; BIOSYNTHESIS; INTERMEDIATE; INSIGHTS; PHENOL; REBH
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 3. 2023 21:52, Mgr. Michaela Hylsová, Ph.D.
Anotace
V originále
Although flavin-dependent halogenases (FDHs) are attractive for C-H bond activation, their applications are limited due to low turnover and stability. We have previously shown that leakage of a halogenating intermediate, hypohalous acid (HOX), causes FDHs to be inefficient by lessening halogenation yield. Here we employed a mechanism-guided semi-rational approach to engineer the intermediate transfer tunnel connecting two active sites of tryptophan 6-halogenase (Thal). This Thal-V82I variant generates less HOX leakage and possesses multiple catalytic improvements such as faster halogenation, broader substrate utilization, and greater thermostability and pH tolerance compared with the wildtype Thal. Stopped-flow and rapid quench kinetics analyses indicated that rate constants of halogenation and flavin oxidation are faster for Thal-V82I. Molecular dynamics simulations revealed that the V82I substitution introduces hydrophobic interactions which regulate tunnel dynamics to accommodate HOX and cause rearrangement of water networks, allowing better use of various substrates than the wildtype. Our approach demonstrates that an in-depth understanding of reaction mechanisms is valuable for improving efficiency of FDHs.
Návaznosti
LM2018121, projekt VaV |
|