2022
External validation study of endometrial cancer preoperative risk stratification model (ENDORISK)
VINKLEROVÁ, Petra, Petra OVESNÁ, Jitka HAUSNEROVÁ, Johanna M. A. PIJNENBORG, Peter J. F. LUCAS et. al.Základní údaje
Originální název
External validation study of endometrial cancer preoperative risk stratification model (ENDORISK)
Autoři
VINKLEROVÁ, Petra (203 Česká republika, domácí), Petra OVESNÁ (203 Česká republika, domácí), Jitka HAUSNEROVÁ (203 Česká republika, domácí), Johanna M. A. PIJNENBORG, Peter J. F. LUCAS, Reijnen CASPER, Vrede STEPHANIE a Vít WEINBERGER (203 Česká republika, garant, domácí)
Vydání
Frontiers in Oncology, Lausanne, Frontiers, 2022, 2234-943X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30204 Oncology
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.700
Kód RIV
RIV/00216224:14110/22:00126395
Organizační jednotka
Lékařská fakulta
UT WoS
000841408200001
Klíčová slova anglicky
Bayesian networks model; disease-specific survival; endometrial cancer; prognosis; risk stratification; sentinel node biopsy; lymph node metastasis
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2023 12:29, Mgr. Tereza Miškechová
Anotace
V originále
Introduction: Among industrialized countries, endometrial cancer is a common malignancy with generally an excellent outcome. To personalize medicine, we ideally compile as much information as possible concerning patient prognosis prior to effecting an appropriate treatment decision. Endometrial cancer preoperative risk stratification (ENDORISK) is a machine learning–based computational Bayesian networks model that predicts lymph node metastasis and 5-year disease-specific survival potential with percentual probability. Our objective included validating ENDORISK effectiveness in our patient cohort, assessing its application in the current use of sentinel node biopsy, and verifying its accuracy in advanced stages. Methods: The ENDORISK model was evaluated with a retrospective cohort of 425 patients from the University Hospital Brno, Czech Republic. Two hundred ninety-nine patients were involved in our disease-specific survival analysis; 226 cases with known lymph node status were available for lymph node metastasis analysis. Patients were included undergoing either pelvic lymph node dissection (N = 84) or sentinel node biopsy (N =70) to explore the accuracy of both staging procedures. Results: The area under the curve was 0.84 (95% confidence interval [CI], 0.77–0.9) for lymph node metastasis analysis and 0.86 (95% CI, 0.79–0.93) for 5-year disease-specific survival evaluation, indicating quite positive concordance between prediction and reality. Calibration plots to visualize results demonstrated an outstanding predictive value for low-risk cancers (grades 1–2), whereas outcomes were underestimated among high-risk patients (grade 3), especially in disease-specific survival. This phenomenon was even more obvious when patients were subclassified according to FIGO clinical stages. Conclusions: Our data confirmed ENDORISK model’s laudable predictive ability, particularly among patients with a low risk of lymph node metastasis and expected favorable survival. For high-risk and/or advanced stages, the ENDORISK network needs to be additionally trained/improved.