2022
AI-Based Software Defect Prediction for Trustworthy Android Apps
SADAF, Saadia, Danish IQBAL a Barbora BÜHNOVÁZákladní údaje
Originální název
AI-Based Software Defect Prediction for Trustworthy Android Apps
Autoři
SADAF, Saadia (586 Pákistán), Danish IQBAL (586 Pákistán, domácí) a Barbora BÜHNOVÁ (203 Česká republika, garant, domácí)
Vydání
New York, USA, Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022, od s. 393-398, 6 s. 2022
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/22:00126420
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-9613-4
Klíčová slova anglicky
Defect Prediction Technique; Software Defect prevention technique; Machine Learning; Artificial Intelligence
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2023 10:01, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The present time in the industry is a time where Android Applications are in a wide range with its widespread of the users also. With the increased use of Android applications, the defects in the Android context have also been increasing. The malware of defective software can be any pernicious program with malignant effects. Many techniques based on static, dynamic, and hybrid approaches have been proposed with the combination of Machine learning (ML) or Artificial Intelligence (AI) techniques. In this regard. Scientifically, it is complicated to examine the malignant effects. A single approach cannot predict defects alone, so multiple approaches must be used simultaneously. However, the proposed techniques do not describe the types of defects they address. The paper aims to propose a framework that classifies the defects. The Artificial Intelligence (AI) techniques are described, and the different defects are mapped to them. The mapping of defects to AI techniques is based on the types of defects found in the Android Context. The accuracy of the techniques and the working criteria has been set as the mapping metrics. This will significantly improve the quality and testing of the product. However, the appropriate technique for a particular type of defect could be easily selected. This will reduce the cost and time efforts put into predicting defects.
Návaznosti
CZ.02.1.01/0.0/0.0/16_019/0000822, interní kód MU (Kód CEP: EF16_019/0000822) |
| ||
EF16_019/0000822, projekt VaV |
| ||
EF19_073/0016943, projekt VaV |
| ||
MUNI/IGA/1254/2021, interní kód MU |
|