2022
Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson's Disease Dysgraphia in a Multilingual Dataset
GALAZ, Zoltan, Peter DROTAR, Jiri MEKYSKA, Matej GAZDA, Jan MUCHA et. al.Základní údaje
Originální název
Comparison of CNN-Learned vs. Handcrafted Features for Detection of Parkinson's Disease Dysgraphia in a Multilingual Dataset
Autoři
GALAZ, Zoltan, Peter DROTAR, Jiri MEKYSKA, Matej GAZDA, Jan MUCHA, Vojtech ZVONCAK, Zdenek SMEKAL, Marcos FAUNDEZ-ZANUY, Reinel CASTRILLON, Juan Rafael OROZCO-ARROYAVE, Steven RAPCSAK, Tamas KINCSES, Luboš BRABENEC (203 Česká republika, domácí) a Irena REKTOROVÁ (203 Česká republika, domácí)
Vydání
Frontiers in Neuroinformatics, Lausanne, Frontiers Media SA, 2022, 1662-5196
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.500
Kód RIV
RIV/00216224:14740/22:00129679
Organizační jednotka
Středoevropský technologický institut
UT WoS
000811334000001
Klíčová slova anglicky
machine learning; deep learning; feature extraction; Parkinson's disease dysgraphia; handwriting analysis
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 19. 8. 2022 12:34, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Parkinson's disease dysgraphia (PDYS), one of the earliest signs of Parkinson's disease (PD), has been researched as a promising biomarker of PD and as the target of a noninvasive and inexpensive approach to monitoring the progress of the disease. However, although several approaches to supportive PDYS diagnosis have been proposed (mainly based on handcrafted features (HF) extracted from online handwriting or the utilization of deep neural networks), it remains unclear which approach provides the highest discrimination power and how these approaches can be transferred between different datasets and languages. This study aims to compare classification performance based on two types of features: features automatically extracted by a pretrained convolutional neural network (CNN) and HF designed by human experts. Both approaches are evaluated on a multilingual dataset collected from 143 PD patients and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary. The subjects performed the spiral drawing task (SDT; a language-independent task) and the sentence writing task (SWT; a language-dependent task). Models based on logistic regression and gradient boosting were trained in several scenarios, specifically single language (SL), leave one language out (LOLO), and all languages combined (ALC). We found that the HF slightly outperformed the CNN-extracted features in all considered evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC) scores were achieved: SL-0.65 (HF), 0.58 (CNN); LOLO-0.65 (HF), 0.57 (CNN); and ALC-0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by a CNN provided competitive results: SL-0.66 (HF), 0.62 (CNN); LOLO-0.56 (HF), 0.54 (CNN); and ALC-0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF outperformed the CNN-extracted features over 6% (mean BACC of 0.66 for HF, and 0.60 for CNN). In the case of the SDT, both feature sets provided almost identical classification performance (mean BACC of 0.60 for HF, and 0.58 for CNN).
Návaznosti
NU20-04-00294, projekt VaV |
| ||
734718, interní kód MU |
|