J 2022

Higher alterations in leaf fluorescence parameters of wheat cultivars predict more extensive necrosis in response to Zymoseptoria tritici

SPYROGLOU, Ioannis, Krystyna RYBKA, Paweł CZEMBOR, Dominika PIASKOWSKA, Markéta PERNISOVÁ et. al.

Základní údaje

Originální název

Higher alterations in leaf fluorescence parameters of wheat cultivars predict more extensive necrosis in response to Zymoseptoria tritici

Autoři

SPYROGLOU, Ioannis (300 Řecko, domácí), Krystyna RYBKA, Paweł CZEMBOR, Dominika PIASKOWSKA, Markéta PERNISOVÁ (203 Česká republika, garant, domácí) a Przemysław MATYSIK

Vydání

PLANT PATHOLOGY, ENGLAND, WILEY, 2022, 0032-0862

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10600 1.6 Biological sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.700

Kód RIV

RIV/00216224:14740/22:00126909

Organizační jednotka

Středoevropský technologický institut

UT WoS

000786697200001

Klíčová slova anglicky

deep learning networks; OJIP; random forest; Septoria tritici blotch; Triticum aestivum; wheat

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 1. 2023 11:41, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

Septoria tritici blotch (STB) is one of the main causes of wheat yield loss in the world. Apart from good agrotechnical practice, disease-resistant cultivars are required to prevent yield losses. Breeding of such cultivars is time-consuming and laborious, mainly due to the quantitative character of such resistance, but can be shortened using precise phenotyping. We show that fluorescence parameters, collected in a high-throughput system, can be used for estimating wheat STB resistance. Using machine learning methods (deep learning network, random forest), we demonstrate that disease resistance based on the percentage of necrotic leaf area can be estimated by alterations in fluorescence parameters 8 days after inoculation, and before disease symptoms become visible. Moreover, we applied a random forest classifier to assess the significance of fluorescence parameters in an informative way (classification accuracy = 64.84%, p value [Accuracy >No information rate] <0.001). Based on this, we observed extensive alterations in parameters of sensitive cultivars, reflecting worse photosynthetic performance. The most highly altered parameters were fluorescence intensity measurements and descriptors of energy flux through photosystem II (PSII) reaction centres towards PSI such as F2, F3 and F4 fluorescence intensities at 0.1, 0.270 and 2 ms; initial to maximal fluorescence ratio (F0/Fm); the time derivative of relative variable fluorescence (dV/dT0); maximum quantum yield of PSII in the dark-adapted state (Fv/Fm); maximum electron transport flux at PSII (ET0/RC); maximum trapped excitonic energy flux per excited PSII cross section (CS) at time T0 (TR0/CS0); and quantum efficiency of the reduction of end acceptors dR0 [dR0/(1 − dR0)].

Návaznosti

EF16_026/0008446, projekt VaV
Název: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin