2023
On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance
TOMAN, Jozef, Miroslav ŠNÍRER, R. RINCÓN, Ondřej JAŠEK, Dalibor VŠIANSKÝ et. al.Základní údaje
Originální název
On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance
Autoři
TOMAN, Jozef (703 Slovensko, domácí), Miroslav ŠNÍRER (703 Slovensko, domácí), R. RINCÓN (garant), Ondřej JAŠEK (203 Česká republika, domácí), Dalibor VŠIANSKÝ (203 Česká republika, domácí), A.M. RAYA, F.J. MORALES-CALERO, J. MUÑOZ a M.D. CALZADA
Vydání
Fuel Processing Technology, Elsevier B.V, 2023, 0378-3820
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10305 Fluids and plasma physics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.500 v roce 2022
Kód RIV
RIV/00216224:14310/23:00130057
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000936126900004
Klíčová slova anglicky
Graphene nanosheets; Microwave plasma; Atmospheric pressure; Ethanol; Production rate
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 22. 2. 2024 09:44, Mgr. Marie Šípková, DiS.
Anotace
V originále
Efficient gas-phase synthesis of few-layer graphene nanosheets (GNS) is based on the controlled formation of the high-temperature environment and the reaction pathway of gas-phase species formed by the decomposition of organic precursors. Such a process results in the formation of high-quality carbon nanomaterial and hydrogen while the concentration of other gaseous by-products is minimized. In this work, the main factors affecting the efficiency of such processes in the TIAGO microwave plasma torch were investigated using detailed material analysis and mass spectrometry of the gas-phase products during the synthesis process. The results showed a limiting effect of increasing the microwave power (MW) on both the product yield as well as material quality, as shown by Raman and x-Ray photoelectron spectroscopy. The change in the reaction pathway increased the formation of C2H4, resulting in the upper limit of the achievable nanopowder yield. The prepared material showed a decrease in its high oxidation resistance, with increasing the delivered MW power as determined by thermogravimetry analysis. This behavior was related to the formation of GNS-Cu nanoparticles composite due to the presence of copper nanoparticles originating from erosion of the electrode of the TIAGO torch during the synthesis process at high MW powers.
Návaznosti
90097, velká výzkumná infrastruktura |
|