J 2023

On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance

TOMAN, Jozef, Miroslav ŠNÍRER, R. RINCÓN, Ondřej JAŠEK, Dalibor VŠIANSKÝ et. al.

Základní údaje

Originální název

On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance

Autoři

TOMAN, Jozef (703 Slovensko, domácí), Miroslav ŠNÍRER (703 Slovensko, domácí), R. RINCÓN (garant), Ondřej JAŠEK (203 Česká republika, domácí), Dalibor VŠIANSKÝ (203 Česká republika, domácí), A.M. RAYA, F.J. MORALES-CALERO, J. MUÑOZ a M.D. CALZADA

Vydání

Fuel Processing Technology, Elsevier B.V, 2023, 0378-3820

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10305 Fluids and plasma physics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 7.500 v roce 2022

Kód RIV

RIV/00216224:14310/23:00130057

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000936126900004

Klíčová slova anglicky

Graphene nanosheets; Microwave plasma; Atmospheric pressure; Ethanol; Production rate

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 22. 2. 2024 09:44, Mgr. Marie Šípková, DiS.

Anotace

V originále

Efficient gas-phase synthesis of few-layer graphene nanosheets (GNS) is based on the controlled formation of the high-temperature environment and the reaction pathway of gas-phase species formed by the decomposition of organic precursors. Such a process results in the formation of high-quality carbon nanomaterial and hydrogen while the concentration of other gaseous by-products is minimized. In this work, the main factors affecting the efficiency of such processes in the TIAGO microwave plasma torch were investigated using detailed material analysis and mass spectrometry of the gas-phase products during the synthesis process. The results showed a limiting effect of increasing the microwave power (MW) on both the product yield as well as material quality, as shown by Raman and x-Ray photoelectron spectroscopy. The change in the reaction pathway increased the formation of C2H4, resulting in the upper limit of the achievable nanopowder yield. The prepared material showed a decrease in its high oxidation resistance, with increasing the delivered MW power as determined by thermogravimetry analysis. This behavior was related to the formation of GNS-Cu nanoparticles composite due to the presence of copper nanoparticles originating from erosion of the electrode of the TIAGO torch during the synthesis process at high MW powers.

Návaznosti

90097, velká výzkumná infrastruktura
Název: CEPLANT