2022
Analyzing the Impact of Greenhouse Planting Strategy and Plant Architecture on Tomato Plant Physiology and Estimated Dry Matter
ZHANG, Yue, Michael HENKE, Yiming LI, Demin XU, Anhua LIU et. al.Základní údaje
Originální název
Analyzing the Impact of Greenhouse Planting Strategy and Plant Architecture on Tomato Plant Physiology and Estimated Dry Matter
Autoři
ZHANG, Yue, Michael HENKE (276 Německo, garant, domácí), Yiming LI, Demin XU, Anhua LIU, Xingan LIU a Tianlai LI
Vydání
Frontiers in Plant Science, Lausanne, FRONTIERS MEDIA SA, 2022, 1664-462X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.600
Kód RIV
RIV/00216224:14740/22:00127312
Organizační jednotka
Středoevropský technologický institut
UT WoS
000765974400001
Klíčová slova anglicky
functional-structure plant modeling (FSPM); planting strategy; plant architecture; photosynthesis; partial least squares path modeling (PLS-PM); GroIMP
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 1. 2023 15:21, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Determine the level of significance of planting strategy and plant architecture and how they affect plant physiology and dry matter accumulation within greenhouses is essential to actual greenhouse plant management and breeding. We thus analyzed four planting strategies (plant spacing, furrow distance, row orientation, planting pattern) and eight different plant architectural traits (internode length, leaf azimuth angle, leaf elevation angle, leaf length, leaflet curve, leaflet elevation, leaflet number/area ratio, leaflet length/width ratio) with the same plant leaf area using a formerly developed functional-structural model for a Chinese Liaoshen-solar greenhouse and tomato plant, which used to simulate the plant physiology of light interception, temperature, stomatal conductance, photosynthesis, and dry matter. Our study led to the conclusion that the planting strategies have a more significant impact overall on plant radiation, temperature, photosynthesis, and dry matter compared to plant architecture changes. According to our findings, increasing the plant spacing will have the most significant impact to increase light interception. E-W orientation has better total light interception but yet weaker light uniformity. Changes in planting patterns have limited influence on the overall canopy physiology. Increasing the plant leaflet area by leaflet N/A ratio from what we could observe for a rose the total dry matter by 6.6%, which is significantly better than all the other plant architecture traits. An ideal tomato plant architecture which combined all the above optimal architectural traits was also designed to provide guidance on phenotypic traits selection of breeding process. The combined analysis approach described herein established the causal relationship between investigated traits, which could directly apply to provide management and breeding insights on other plant species with different solar greenhouse structures.
Návaznosti
EF16_026/0008446, projekt VaV |
|