HENKE, Michael a Evgeny GLADILIN. Virtual Laser Scanning Approach to Assessing Impact of Geometric Inaccuracy on 3D Plant Traits. REMOTE SENSING. MDPI, 2022, roč. 14, č. 19, s. 1-19. ISSN 2072-4292. Dostupné z: https://dx.doi.org/10.3390/rs14194727.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Virtual Laser Scanning Approach to Assessing Impact of Geometric Inaccuracy on 3D Plant Traits
Autoři HENKE, Michael (276 Německo, garant, domácí) a Evgeny GLADILIN.
Vydání REMOTE SENSING, MDPI, 2022, 2072-4292.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10600 1.6 Biological sciences
Stát vydavatele Kanada
Utajení není předmětem státního či obchodního tajemství
WWW odkaz na webovou stránku
Impakt faktor Impact factor: 5.000
Kód RIV RIV/00216224:14740/22:00127314
Organizační jednotka Středoevropský technologický institut
Doi http://dx.doi.org/10.3390/rs14194727
UT WoS 000868040300001
Klíčová slova anglicky 3D plant phenotyping; virtual laser scanning; computational plant modeling; light interception; shoot architecture; trait sensitivity; GroIMP
Štítky CF PLANT, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Pavla Foltynová, Ph.D., učo 106624. Změněno: 3. 4. 2023 10:07.
Anotace
In recent years, 3D imaging became an increasingly popular screening modality for high-throughput plant phenotyping. The 3D scans provide a rich source of information about architectural plant organization which cannot always be derived from multi-view projection 2D images. On the other hand, 3D scanning is associated with a principle inaccuracy by assessment of geometrically complex plant structures, for example, due the loss of geometrical information on reflective, shadowed, inclined and/or curved leaf surfaces. Here, we aim to quantitatively assess the impact of geometrical inaccuracies in 3D plant data on phenotypic descriptors of four different shoot architectures, including tomato, maize, cucumber, and arabidopsis. For this purpose, virtual laser scanning of synthetic models of these four plant species was used. This approach was applied to simulate different scenarios of 3D model perturbation, as well as the principle loss of geometrical information in shadowed plant regions. Our experimental results show that different plant traits exhibit different and, in general, plant type specific dependency on the level of geometrical perturbations. However, some phenotypic traits are tendentially more or less correlated with the degree of geometrical inaccuracies in assessing 3D plant architecture. In particular, integrative traits, such as plant area, volume, and physiologically important light absorption show stronger correlation with the effectively visible plant area than linear shoot traits, such as total plant height and width crossover different scenarios of geometrical perturbation. Our study addresses an important question of reliability and accuracy of 3D plant measurements and provides solution suggestions for consistent quantitative analysis and interpretation of imperfect data by combining measurement results with computational simulation of synthetic plant models.
Návaznosti
EF16_026/0008446, projekt VaVNázev: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin
VytisknoutZobrazeno: 24. 7. 2024 07:36