J 2022

Virtual Laser Scanning Approach to Assessing Impact of Geometric Inaccuracy on 3D Plant Traits

HENKE, Michael a Evgeny GLADILIN

Základní údaje

Originální název

Virtual Laser Scanning Approach to Assessing Impact of Geometric Inaccuracy on 3D Plant Traits

Autoři

HENKE, Michael (276 Německo, garant, domácí) a Evgeny GLADILIN

Vydání

REMOTE SENSING, MDPI, 2022, 2072-4292

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10600 1.6 Biological sciences

Stát vydavatele

Kanada

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 5.000

Kód RIV

RIV/00216224:14740/22:00127314

Organizační jednotka

Středoevropský technologický institut

UT WoS

000868040300001

Klíčová slova anglicky

3D plant phenotyping; virtual laser scanning; computational plant modeling; light interception; shoot architecture; trait sensitivity; GroIMP

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 3. 4. 2023 10:07, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

In recent years, 3D imaging became an increasingly popular screening modality for high-throughput plant phenotyping. The 3D scans provide a rich source of information about architectural plant organization which cannot always be derived from multi-view projection 2D images. On the other hand, 3D scanning is associated with a principle inaccuracy by assessment of geometrically complex plant structures, for example, due the loss of geometrical information on reflective, shadowed, inclined and/or curved leaf surfaces. Here, we aim to quantitatively assess the impact of geometrical inaccuracies in 3D plant data on phenotypic descriptors of four different shoot architectures, including tomato, maize, cucumber, and arabidopsis. For this purpose, virtual laser scanning of synthetic models of these four plant species was used. This approach was applied to simulate different scenarios of 3D model perturbation, as well as the principle loss of geometrical information in shadowed plant regions. Our experimental results show that different plant traits exhibit different and, in general, plant type specific dependency on the level of geometrical perturbations. However, some phenotypic traits are tendentially more or less correlated with the degree of geometrical inaccuracies in assessing 3D plant architecture. In particular, integrative traits, such as plant area, volume, and physiologically important light absorption show stronger correlation with the effectively visible plant area than linear shoot traits, such as total plant height and width crossover different scenarios of geometrical perturbation. Our study addresses an important question of reliability and accuracy of 3D plant measurements and provides solution suggestions for consistent quantitative analysis and interpretation of imperfect data by combining measurement results with computational simulation of synthetic plant models.

Návaznosti

EF16_026/0008446, projekt VaV
Název: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin