2022
Concept of Relational Similarity Search
MÍČ, Vladimír a Pavel ZEZULAZákladní údaje
Originální název
Concept of Relational Similarity Search
Autoři
MÍČ, Vladimír (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, garant, domácí)
Vydání
Cham, Similarity Search and Applications: 15th International Conference, SISAP 2022, Bologna, Italy, October 5 - October 7, 2022, Proceedings, od s. 89-103, 15 s. 2022
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/22:00127336
Organizační jednotka
Fakulta informatiky
ISBN
978-3-031-17848-1
ISSN
UT WoS
000874756300008
Klíčová slova anglicky
Efficient similarity search;Relational similarity;Similarity comparisons;Effective similarity search
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 22. 11. 2023 16:43, RNDr. Vladimír Míč, Ph.D.
Anotace
V originále
For decades, the success of the similarity search has been based on a detailed quantification of pairwise similarity of objects. Currently, the search features have become much more precise but also bulkier, and the similarity computations more time-consuming. While the k nearest neighbours (kNN) search dominates the real-life applications, we claim that it is principally free of a need for precise similarity quantifications. Based on the well-known fact that a selection of the most similar alternative out of several options is a much easier task than deciding the absolute similarity scores, we propose the search based on an epistemologically simpler concept of relational similarity. Having arbitrary objects q,o1,o2 from the search domain, the kNN search is solvable just by the ability to choose the more similar object to q out of o1,o2 – the decision can also contain a neutral option. We formalise such searching and discuss its advantages concerning similarity quantifications, namely its efficiency and robustness. We also propose a pioneering implementation of the relational similarity search for the Euclidean spaces and report its extreme filtering power in comparison with 3 contemporary techniques.
Návaznosti
EF16_019/0000822, projekt VaV |
|