2023
Nextflow in Bioinformatics: Executors Performance Comparison Using Genomics Data
SPIŠAKOVÁ, Viktória, Lukáš HEJTMÁNEK a Jakub HYNŠTZákladní údaje
Originální název
Nextflow in Bioinformatics: Executors Performance Comparison Using Genomics Data
Autoři
SPIŠAKOVÁ, Viktória (703 Slovensko, domácí), Lukáš HEJTMÁNEK (203 Česká republika, domácí) a Jakub HYNŠT (203 Česká republika, domácí)
Vydání
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, NETHERLANDS, ELSEVIER, 2023, 0167-739X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.500 v roce 2022
Kód RIV
RIV/00216224:14610/23:00130181
Organizační jednotka
Ústav výpočetní techniky
UT WoS
000926828200001
Klíčová slova anglicky
Kubernetes;HPC;Cloud;Performance comparison;Genomics;Nextflow;Big data
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 3. 2024 15:39, Mgr. Alena Mokrá
Anotace
V originále
Processing big data is a computationally demanding task which has usually been fulfilled by HPC batch systems. These complex systems pose a challenge to scientists due to their cumbersome nature and changing environment. The scientists often lack deeper informatics understanding and experiment reproducibility is increasingly becoming a hard request on the research validity. A new computational paradigm — containers — are meant to contain all dependencies and persist the state which help reproducibility. They have gained a lot of popularity in the informatics community but HPC community remains skeptical and doubts that container platforms are appropriate for demanding tasks or that such infrastructure can reach significant performance. In this paper, we observe the performance of various infrastructure types (HPC, Kubernetes, local) on a Sarek Nextflow bioinformatics workflow with real life genomics data of various sizes. We analyze obtained workload trace and discuss pros and cons of utilized infrastructures. We also show some approaches perform better in terms of available resources but others are more suitable for diversified workflows. Based on the results, we provide recommendations for life science groups which plan to analyze data in large scale.
Návaznosti
EF16_026/0008448, projekt VaV |
| ||
LM2018140, projekt VaV |
|