1997
Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes
KOZUBEK, Stanislav, Emilie LUKÁŠOVÁ, Leonard RÝZNAR, Michal KOZUBEK, Raisa GOVORUN et. al.Základní údaje
Originální název
Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes
Autoři
KOZUBEK, Stanislav (203 Česká republika), Emilie LUKÁŠOVÁ (203 Česká republika), Leonard RÝZNAR, Michal KOZUBEK (203 Česká republika), Raisa GOVORUN, Evgenij KRASAVIN a Gerda HORNECK
Vydání
Blood, 1997, 0006-4971
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 9.507
Kód RIV
RIV/00216224:14330/97:00001510
Organizační jednotka
Fakulta informatiky
UT WoS
A1997XE97400033
Klíčová slova anglicky
nuclear topography; ABL; BCR
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 5. 2010 17:24, prof. RNDr. Michal Kozubek, Ph.D.
Anotace
V originále
Using dual-color fluorescence in situ hybridization (FISH) combined with two-dimensional (2D) image analysis, the locations of ABL and BCR genes in cell nuclei were studied. The center of nucleus-to-gene and mutual distances of ABL and BCR genes in interphase nuclei of nonstimulated and stimulated lymphocytes as well as in lymphocytes stimulated after irradiation were determined. We found that, after stimulation, the ABL and BCR genes move towards the membrane, their mutual distances increase, and the shortest distance between heterologous ABL and BCR genes increases. The distribution of the shortest distances between ABL and BCR genes in the G0 phase of lymphocytes corresponds to the theoretical distribution calculated by the Monte-Carlo simulation. Interestingly, the shortest ABL-BCR distances in G1 and S(G2) nuclei are greater in experiment as compared with theory. This result suggests the existence of a certain regularity in the gene arrangement in the G1 and S(G2) nuclei that keeps ABL and BCR genes at longer than random distances. On the other hand, in about 2% to 8% of lymphocytes, the ABL and BCR genes are very close to each other (the distance is less than 0.2 to 0.3 ľm). For comparison, we studied another pair of genes, c-MYC and IgH, that are critical for the induction of t(8;14) translocation that occurs in the Burkitt's lymphoma. We found that in about 8% of lymphocytes, c-MYC and IgH are very close to each other. Similar results were obtained for human fibroblasts. Gamma-radiation leads to substantial changes in the chromatin structure of stimulated lymphocytes: ABL and BCR genes are shifted to the nuclear center, and mutual ABL-BCR distances become much shorter in the G1 and S(G2) stages of the cell cycle. The fact that the genes involved in the t(8;14) translocation are also located close together in a certain fraction of cells substantiates the hypothesis that physical distance plays an important role in the processes leading to the translocations that are responsible for oncogenic transformation of cells.
Návaznosti
GA202/96/1718, projekt VaV |
| ||
IZ2636, projekt VaV |
|