HENRY, Rhiana E., Lee A. GROAT, R. James EVANS, Jan CEMPÍREK and Radek ŠKODA. Crystal-Chemical Observations and the Relation Between Sodium and H2O in Different Beryl Varieties. Canadian Mineralogist. Mineralogical Association of Canada, 2022, vol. 60, No 4, p. 625-675. ISSN 0008-4476. Available from: https://dx.doi.org/10.3749/canmin.2100050.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Crystal-Chemical Observations and the Relation Between Sodium and H2O in Different Beryl Varieties
Authors HENRY, Rhiana E. (guarantor), Lee A. GROAT, R. James EVANS, Jan CEMPÍREK (203 Czech Republic, belonging to the institution) and Radek ŠKODA (203 Czech Republic, belonging to the institution).
Edition Canadian Mineralogist, Mineralogical Association of Canada, 2022, 0008-4476.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10504 Mineralogy
Country of publisher Canada
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 0.900
RIV identification code RIV/00216224:14310/22:00128030
Organization unit Faculty of Science
Doi http://dx.doi.org/10.3749/canmin.2100050
UT WoS 000861174800003
Keywords in English beryl; crystallography; water; sodium; mineralogy; crystal chemistry; emerald; aquamarine
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 17/1/2023 10:25.
Abstract
Beryl (Be3Al2Si6O18) is a well-known mineral, most famously in its vivid green form of emerald, but also as a range of other colors. Prominent varieties of beryl aside from emerald include aquamarine, red beryl, heliodor, goshenite, and morganite. There has not been a significant amount of research dedicated to comparing the crystal-chemical differences among the varieties of beryl except in determining chromophoric cations. While the H2O content within structural channels of emerald has been explored, and the H2O content of individual beryl specimens has been studied, there has not yet been a study comparing the H2O content systematically across beryl varieties. In this study we consider single-crystal X-ray diffraction data and electron probe microanalyses of 80 beryl specimens of six primary varieties, to compare and contrast their crystal chemistry. Beryl cation substitutions are dominantly coupled substitutions that require Na to enter a structural channel site. The results indicate that with increasing Na content beryl varieties diverge into two groups, characterized by substitutions at octahedral or tetrahedral sites, and that the dominant overall cation substitutions in each beryl variety tend to be different in more than just their chromophores. We find that the relation between Na and H2O content in beryl is consistent for beryl with significant Na content, but not among beryl with low Na content. Natural red beryl is found to be anhydrous, and heliodor has Na content too low to reliably determine H2O content from measured Na. We determined equations and recommendations to relate the Na and H2O content in emerald, aquamarine, goshenite, and morganite from a crystallographic perspective that is applicable to beryl chemistry measured by other means. This research will help guide future beryl studies in classifying beryl variety by chemistry and structure and allow the calculation of H2O content in a range of beryl varieties from easily measured Na content instead of requiring the use of expensive or destructive methods.
PrintDisplayed: 22/5/2024 13:36