J 2022

Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations

POKORNÁ, Pavlína, Miroslav KREPL, Sébastien CAMPAGNE a Jiří ŠPONER

Základní údaje

Originální název

Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations

Autoři

POKORNÁ, Pavlína (203 Česká republika, domácí), Miroslav KREPL (203 Česká republika), Sébastien CAMPAGNE a Jiří ŠPONER (203 Česká republika, garant)

Vydání

Journal of Physical Chemistry B, American Chemical Society, 2022, 1520-6106

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10608 Biochemistry and molecular biology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.300

Kód RIV

RIV/00216224:14310/22:00128191

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000884868500001

Klíčová slova anglicky

Chemical structure; Computational chemistry; Conformation; Genetics; Molecular mechanics

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 26. 1. 2023 15:13, Mgr. Marie Šípková, DiS.

Anotace

V originále

RNA–protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 μs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA–protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA–protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA–protein complexes.