J 2022

Proline-specific aminopeptidase P prevents replication-associated genome instability

SILVA, Nicola, Maikel CASTELLANO-POZO, Kenichiro J. MATSUZAKI, Consuelo BARROSO, Monica P. ROMAN-TRUFERO et. al.

Základní údaje

Originální název

Proline-specific aminopeptidase P prevents replication-associated genome instability

Autoři

SILVA, Nicola (380 Itálie, domácí), Maikel CASTELLANO-POZO, Kenichiro J. MATSUZAKI, Consuelo BARROSO, Monica P. ROMAN-TRUFERO, Hannah CRAIG, Darren P. BROOKS, R. Elwyn ISAAC, Simon P. BOULTON a Enrique MARTINEZ-PEREZ (garant)

Vydání

PLoS Genetics, San Francisco, Public Library of Science, 2022, 1553-7404

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10603 Genetics and heredity

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.500

Kód RIV

RIV/00216224:14110/22:00128227

Organizační jednotka

Lékařská fakulta

UT WoS

000748003200001

Klíčová slova anglicky

Proline-specific aminopeptidase P; replication-associated genome instability

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 2. 2023 09:15, Mgr. Tereza Miškechová

Anotace

V originále

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication. Author summaryThe accurate duplication of DNA that occurs before cells divide is an essential aspect of the cell cycle that is also crucial for the correct development of multicellular organisms. Mutations that compromise the normal function of the DNA replication machinery can lead to the accumulation of replication-related DNA damage, a known cause of human disease and a common feature of cancer and precancerous cells. Therefore, identifying factors that prevent replication-related DNA damage is highly relevant for human health. In this manuscript, we identify aminopeptidase P, an enzyme involved in the breakdown of proteins containing the amino acid Proline at their N-terminus, as a novel factor that prevents replication-related DNA damage. Analysis of C. elegans nematodes lacking aminopeptidase P reveals that this protein is required for normal fertility and development, and that in its absence proliferating germ cells display DNA replication defects, including cell cycle arrest and accumulation of extensive DNA damage. We also show that removal of aminopeptidase P induces DNA damage in proliferating human cells, suggesting that its role in preventing replication defects is evolutionarily conserved. These findings uncover functional connections between aminopeptidase-mediated protein degradation and DNA replication.

Návaznosti

GA20-08819S, projekt VaV
Název: Pochopení úlohy PARG při podpoře tvorby a oprav dvouřetězcových zlomů DNA v meióze
Investor: Grantová agentura ČR, Pochopení úlohy PARG při podpoře tvorby a oprav dvouřetězcových zlomů DNA v meióze
MUNI/A/1418/2021, interní kód MU
Název: Biomedicínské vědy II (Akronym: BIOMED)
Investor: Masarykova univerzita, Biomedicínské vědy II