J 2022

Self-organization phenomena in cold atmospheric pressure plasma slit jet

POLÁŠKOVÁ, Kateřina, David NEČAS, Lukáš DOSTÁL, Miloš KLÍMA, Pavel FIALA et. al.

Základní údaje

Originální název

Self-organization phenomena in cold atmospheric pressure plasma slit jet

Autoři

POLÁŠKOVÁ, Kateřina (203 Česká republika, domácí), David NEČAS, Lukáš DOSTÁL, Miloš KLÍMA, Pavel FIALA a Lenka ZAJÍČKOVÁ (203 Česká republika, garant, domácí)

Vydání

Plasma Sources Science and Technology, IOP Publishing Ltd, 2022, 0963-0252

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10305 Fluids and plasma physics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.800

Kód RIV

RIV/00216224:14310/22:00128318

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000907216600001

Klíčová slova anglicky

radio frequency plasma jet; plasma filaments; fast camera imaging; image data processing; plasma treatment uniformity

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 18:19, doc. Mgr. Lenka Zajíčková, Ph.D.

Anotace

V originále

The radio frequency plasma slit jet, which produces 150 mm wide streaming plasma outside the jet body, exhibits exciting self-organization phenomena that resemble the self-organized patterns of dielectric barrier discharge (DBD) filaments. Similarly, as in DBD, the filaments are surrounded by an inhibition zone that does not allow two filaments to come closer to each other. With fast camera imaging, we observed the filamentary character of the discharge in all the studied gas feeds (Ar, Ar/N2, and Ar/O2). Still, the visual appearance of the filaments in the plasma and their interaction with a dielectric surface depended significantly on the gas feed. As the breakdown voltage in pure Ar is relatively low compared to the applied one, new filaments form frequently. Such newly created filaments disrupted the characteristic inter-filament distance, forcing the system to rearrange. The frequent ignition and decay processes in Ar led to short filament lifetimes (0.020–0.035 s) and their high jitter speed (0.9–1.7 m s−1), as determined with an image processing custom code based on Gwyddion libraries. The number of filaments was lower in the Ar/O2 and Ar/N2 mixtures. It was attributed to a loss of energy in the excitation of rotational and vibrational levels and oxygen electronegativity. Since the probability of low-current side discharges transitioning into the full plasma filaments was limited in these gas mixtures, the self-organized pattern was seldom disrupted, leading to lesser movement and longer lifetimes. Unlike in Ar or Ar/O2, the constricted filaments in Ar/N2 were surrounded by diffuse plasma plumes, likely connected to the presence of long-lived nitrogen species. We demonstrated in the polypropylene treatment that the self-organization phenomena affected the treatment uniformity.