2023
Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models
DEULOFEU FIGUERAS, Meritxell, Eladia M. PEÑA-MÉNDEZ, Petr VAŇHARA, Josef HAVEL, Lukáš MORÁŇ et. al.Základní údaje
Originální název
Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models
Autoři
DEULOFEU FIGUERAS, Meritxell (724 Španělsko, domácí), Eladia M. PEÑA-MÉNDEZ, Petr VAŇHARA (203 Česká republika, domácí), Josef HAVEL (203 Česká republika, domácí), Lukáš MORÁŇ (203 Česká republika, domácí), Lukáš PEČINKA (203 Česká republika, domácí), Anna BAGÓ-MAS, Enrique VERDÚ, Victoria SALVADÓ a Pere BOADAS-VAELLO (garant)
Vydání
ACS Chemical Neuroscience, American Chemical Society, 2023, 1948-7193
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30400 3.4 Medical biotechnology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.000 v roce 2022
Kód RIV
RIV/00216224:14110/23:00130292
Organizační jednotka
Lékařská fakulta
UT WoS
000907867400001
Klíčová slova anglicky
neuropathic pain; fibromyalgia; mass spectrometry; artificial intelligence; MALDI-TOF MS; diagnostics
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 11:30, Mgr. Marie Šípková, DiS.
Anotace
V originále
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Návaznosti
MUNI/A/1298/2022, interní kód MU |
| ||
MUNI/A/1398/2021, interní kód MU |
| ||
MUNI/A/1412/2021, interní kód MU |
| ||
MUNI/11/ACC/3/2022, interní kód MU |
|