J 2023

AI for Life: Trends in Artificial Intelligence for Biotechnology

HOLZINGER, Andreas, Katharina KEIBLINGER, Petr HOLUB, Kurt ZATLOUKAL, Heimo MÜLLER et. al.

Základní údaje

Originální název

AI for Life: Trends in Artificial Intelligence for Biotechnology

Autoři

HOLZINGER, Andreas, Katharina KEIBLINGER, Petr HOLUB (203 Česká republika, garant, domácí), Kurt ZATLOUKAL a Heimo MÜLLER

Vydání

NEW BIOTECHNOLOGY, NETHERLANDS, ELSEVIER, 2023, 1871-6784

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.400 v roce 2022

Kód RIV

RIV/00216224:14610/23:00130298

Organizační jednotka

Ústav výpočetní techniky

UT WoS

000936300300001

Klíčová slova anglicky

AI; biotechology; explainable artificial intelligence; XAI; life sciences; provenance
Změněno: 20. 3. 2024 17:20, doc. RNDr. Petr Holub, Ph.D.

Anotace

V originále

Due to popular successes (e.g., ChatGPT) Artificial Intelligence (AI) is on everyone's lips today. When advances in biotechnology are combined with advances in AI unprecedented new potential solutions become available. This can help with many global problems and contribute to important Sustainability Development Goals. Current examples include Food Security, Health and Well-being, Clean Water, Clean Energy, Responsible Consumption and Production, Climate Action, Life below Water, or protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss. AI is ubiquitous in the life sciences today. Topics include a wide range from machine learning and Big Data analytics, knowledge discovery and data mining, biomedical ontologies, knowledge-based reasoning, natural language processing, decision support and reasoning under uncertainty, temporal and spatial representation and inference, and methodological aspects of explainable AI (XAI) with applications of biotechnology. In this pre-Editorial paper, we provide an overview of open research issues and challenges for each of the topics addressed in this special issue. Potential authors can directly use this as a guideline for developing their paper.

Návaznosti

101079183, interní kód MU
Název: BioMedAI TWINNING
Investor: Evropská unie, BioMedAI TWINNING, Rozšiřování účasti a posílení ERA