2023
Deep-Learning based Reputation Model for Indirect Trust Management
BANGUI, Hind; Mouzhi GE a Barbora BÜHNOVÁZákladní údaje
Originální název
Deep-Learning based Reputation Model for Indirect Trust Management
Autoři
BANGUI, Hind (504 Maroko, garant, domácí); Mouzhi GE (156 Čína) a Barbora BÜHNOVÁ (203 Česká republika, domácí)
Vydání
Neuveden, 14th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2023), od s. 405-412, 8 s. 2023
Nakladatel
Elsevier
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/23:00130330
Organizační jednotka
Fakulta informatiky
ISSN
EID Scopus
2-s2.0-85162885481
Klíčová slova anglicky
Trust Management; Deep learning; IoT; AI
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 4. 2024 22:49, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In the digital era, human and thing behavioral patterns have been merged, which leads to the need for trust management to secure the relationship among people and things (e.g., driverless cars). Due to the dynamism and complexity of digital environments, trust management depends largely on indirect trust to support its reasoning by building the reputation of trustees based on recommendations reflected in the feedback of sentiment and non-sentiment objects. However, different biases are still affecting the accuracy of indirect trust that reflects a collective trustworthiness belief or societal stereotypes. This work focuses on enabling indirect trust management by leveraging deep learning in combination with synthetic data for bias management. Specifically, this paper proposes a reputation model to support decision-making in trust management by minimizing bias in indirect trust information and fostering fairly the relationship among sentiment and non-sentiment objects. Our experimental results show that the synthetic data can significantly improve the classification accuracy in trust management.
Návaznosti
CZ.02.1.01/0.0/0.0/16_019/0000822, interní kód MU (Kód CEP: EF16_019/0000822) |
| ||
EF16_019/0000822, projekt VaV |
|